This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Complement of complement of a closed subspace of Hilbert space. Theorem 3.7(ii) of Beran p. 102. (Contributed by NM, 11-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ococ.1 | ⊢ 𝐴 ∈ Cℋ | |
| Assertion | ococi | ⊢ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ococ.1 | ⊢ 𝐴 ∈ Cℋ | |
| 2 | 1 | chshii | ⊢ 𝐴 ∈ Sℋ |
| 3 | shocsh | ⊢ ( 𝐴 ∈ Sℋ → ( ⊥ ‘ 𝐴 ) ∈ Sℋ ) | |
| 4 | 2 3 | ax-mp | ⊢ ( ⊥ ‘ 𝐴 ) ∈ Sℋ |
| 5 | shocsh | ⊢ ( ( ⊥ ‘ 𝐴 ) ∈ Sℋ → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∈ Sℋ ) | |
| 6 | 4 5 | ax-mp | ⊢ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∈ Sℋ |
| 7 | shococss | ⊢ ( 𝐴 ∈ Sℋ → 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) | |
| 8 | 2 7 | ax-mp | ⊢ 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) |
| 9 | incom | ⊢ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐴 ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) | |
| 10 | ocin | ⊢ ( ( ⊥ ‘ 𝐴 ) ∈ Sℋ → ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) = 0ℋ ) | |
| 11 | 4 10 | ax-mp | ⊢ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) = 0ℋ |
| 12 | 9 11 | eqtri | ⊢ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ |
| 13 | 1 6 8 12 | omlsii | ⊢ 𝐴 = ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) |
| 14 | 13 | eqcomi | ⊢ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = 𝐴 |