This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The orthocomplement of the zero subspace is the unit subspace. (Contributed by NM, 15-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | choc0 | ⊢ ( ⊥ ‘ 0ℋ ) = ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | h0elsh | ⊢ 0ℋ ∈ Sℋ | |
| 2 | shocel | ⊢ ( 0ℋ ∈ Sℋ → ( 𝑥 ∈ ( ⊥ ‘ 0ℋ ) ↔ ( 𝑥 ∈ ℋ ∧ ∀ 𝑦 ∈ 0ℋ ( 𝑥 ·ih 𝑦 ) = 0 ) ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( 𝑥 ∈ ( ⊥ ‘ 0ℋ ) ↔ ( 𝑥 ∈ ℋ ∧ ∀ 𝑦 ∈ 0ℋ ( 𝑥 ·ih 𝑦 ) = 0 ) ) |
| 4 | hi02 | ⊢ ( 𝑥 ∈ ℋ → ( 𝑥 ·ih 0ℎ ) = 0 ) | |
| 5 | df-ral | ⊢ ( ∀ 𝑦 ∈ 0ℋ ( 𝑥 ·ih 𝑦 ) = 0 ↔ ∀ 𝑦 ( 𝑦 ∈ 0ℋ → ( 𝑥 ·ih 𝑦 ) = 0 ) ) | |
| 6 | elch0 | ⊢ ( 𝑦 ∈ 0ℋ ↔ 𝑦 = 0ℎ ) | |
| 7 | 6 | imbi1i | ⊢ ( ( 𝑦 ∈ 0ℋ → ( 𝑥 ·ih 𝑦 ) = 0 ) ↔ ( 𝑦 = 0ℎ → ( 𝑥 ·ih 𝑦 ) = 0 ) ) |
| 8 | 7 | albii | ⊢ ( ∀ 𝑦 ( 𝑦 ∈ 0ℋ → ( 𝑥 ·ih 𝑦 ) = 0 ) ↔ ∀ 𝑦 ( 𝑦 = 0ℎ → ( 𝑥 ·ih 𝑦 ) = 0 ) ) |
| 9 | ax-hv0cl | ⊢ 0ℎ ∈ ℋ | |
| 10 | 9 | elexi | ⊢ 0ℎ ∈ V |
| 11 | oveq2 | ⊢ ( 𝑦 = 0ℎ → ( 𝑥 ·ih 𝑦 ) = ( 𝑥 ·ih 0ℎ ) ) | |
| 12 | 11 | eqeq1d | ⊢ ( 𝑦 = 0ℎ → ( ( 𝑥 ·ih 𝑦 ) = 0 ↔ ( 𝑥 ·ih 0ℎ ) = 0 ) ) |
| 13 | 10 12 | ceqsalv | ⊢ ( ∀ 𝑦 ( 𝑦 = 0ℎ → ( 𝑥 ·ih 𝑦 ) = 0 ) ↔ ( 𝑥 ·ih 0ℎ ) = 0 ) |
| 14 | 8 13 | bitri | ⊢ ( ∀ 𝑦 ( 𝑦 ∈ 0ℋ → ( 𝑥 ·ih 𝑦 ) = 0 ) ↔ ( 𝑥 ·ih 0ℎ ) = 0 ) |
| 15 | 5 14 | bitri | ⊢ ( ∀ 𝑦 ∈ 0ℋ ( 𝑥 ·ih 𝑦 ) = 0 ↔ ( 𝑥 ·ih 0ℎ ) = 0 ) |
| 16 | 4 15 | sylibr | ⊢ ( 𝑥 ∈ ℋ → ∀ 𝑦 ∈ 0ℋ ( 𝑥 ·ih 𝑦 ) = 0 ) |
| 17 | abai | ⊢ ( ( 𝑥 ∈ ℋ ∧ ∀ 𝑦 ∈ 0ℋ ( 𝑥 ·ih 𝑦 ) = 0 ) ↔ ( 𝑥 ∈ ℋ ∧ ( 𝑥 ∈ ℋ → ∀ 𝑦 ∈ 0ℋ ( 𝑥 ·ih 𝑦 ) = 0 ) ) ) | |
| 18 | 16 17 | mpbiran2 | ⊢ ( ( 𝑥 ∈ ℋ ∧ ∀ 𝑦 ∈ 0ℋ ( 𝑥 ·ih 𝑦 ) = 0 ) ↔ 𝑥 ∈ ℋ ) |
| 19 | 3 18 | bitri | ⊢ ( 𝑥 ∈ ( ⊥ ‘ 0ℋ ) ↔ 𝑥 ∈ ℋ ) |
| 20 | 19 | eqriv | ⊢ ( ⊥ ‘ 0ℋ ) = ℋ |