This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006) (Revised by Mario Carneiro, 17-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elnlfn | ⊢ ( 𝑇 : ℋ ⟶ ℂ → ( 𝐴 ∈ ( null ‘ 𝑇 ) ↔ ( 𝐴 ∈ ℋ ∧ ( 𝑇 ‘ 𝐴 ) = 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nlfnval | ⊢ ( 𝑇 : ℋ ⟶ ℂ → ( null ‘ 𝑇 ) = ( ◡ 𝑇 “ { 0 } ) ) | |
| 2 | cnvimass | ⊢ ( ◡ 𝑇 “ { 0 } ) ⊆ dom 𝑇 | |
| 3 | 1 2 | eqsstrdi | ⊢ ( 𝑇 : ℋ ⟶ ℂ → ( null ‘ 𝑇 ) ⊆ dom 𝑇 ) |
| 4 | fdm | ⊢ ( 𝑇 : ℋ ⟶ ℂ → dom 𝑇 = ℋ ) | |
| 5 | 3 4 | sseqtrd | ⊢ ( 𝑇 : ℋ ⟶ ℂ → ( null ‘ 𝑇 ) ⊆ ℋ ) |
| 6 | 5 | sseld | ⊢ ( 𝑇 : ℋ ⟶ ℂ → ( 𝐴 ∈ ( null ‘ 𝑇 ) → 𝐴 ∈ ℋ ) ) |
| 7 | 6 | pm4.71rd | ⊢ ( 𝑇 : ℋ ⟶ ℂ → ( 𝐴 ∈ ( null ‘ 𝑇 ) ↔ ( 𝐴 ∈ ℋ ∧ 𝐴 ∈ ( null ‘ 𝑇 ) ) ) ) |
| 8 | 1 | eleq2d | ⊢ ( 𝑇 : ℋ ⟶ ℂ → ( 𝐴 ∈ ( null ‘ 𝑇 ) ↔ 𝐴 ∈ ( ◡ 𝑇 “ { 0 } ) ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝑇 : ℋ ⟶ ℂ ∧ 𝐴 ∈ ℋ ) → ( 𝐴 ∈ ( null ‘ 𝑇 ) ↔ 𝐴 ∈ ( ◡ 𝑇 “ { 0 } ) ) ) |
| 10 | ffn | ⊢ ( 𝑇 : ℋ ⟶ ℂ → 𝑇 Fn ℋ ) | |
| 11 | eleq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ ( ◡ 𝑇 “ { 0 } ) ↔ 𝐴 ∈ ( ◡ 𝑇 “ { 0 } ) ) ) | |
| 12 | fveqeq2 | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑇 ‘ 𝑥 ) = 0 ↔ ( 𝑇 ‘ 𝐴 ) = 0 ) ) | |
| 13 | 11 12 | bibi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ ( ◡ 𝑇 “ { 0 } ) ↔ ( 𝑇 ‘ 𝑥 ) = 0 ) ↔ ( 𝐴 ∈ ( ◡ 𝑇 “ { 0 } ) ↔ ( 𝑇 ‘ 𝐴 ) = 0 ) ) ) |
| 14 | 13 | imbi2d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑇 Fn ℋ → ( 𝑥 ∈ ( ◡ 𝑇 “ { 0 } ) ↔ ( 𝑇 ‘ 𝑥 ) = 0 ) ) ↔ ( 𝑇 Fn ℋ → ( 𝐴 ∈ ( ◡ 𝑇 “ { 0 } ) ↔ ( 𝑇 ‘ 𝐴 ) = 0 ) ) ) ) |
| 15 | 0cn | ⊢ 0 ∈ ℂ | |
| 16 | vex | ⊢ 𝑥 ∈ V | |
| 17 | 16 | eliniseg | ⊢ ( 0 ∈ ℂ → ( 𝑥 ∈ ( ◡ 𝑇 “ { 0 } ) ↔ 𝑥 𝑇 0 ) ) |
| 18 | 15 17 | ax-mp | ⊢ ( 𝑥 ∈ ( ◡ 𝑇 “ { 0 } ) ↔ 𝑥 𝑇 0 ) |
| 19 | fnbrfvb | ⊢ ( ( 𝑇 Fn ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) = 0 ↔ 𝑥 𝑇 0 ) ) | |
| 20 | 18 19 | bitr4id | ⊢ ( ( 𝑇 Fn ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑥 ∈ ( ◡ 𝑇 “ { 0 } ) ↔ ( 𝑇 ‘ 𝑥 ) = 0 ) ) |
| 21 | 20 | expcom | ⊢ ( 𝑥 ∈ ℋ → ( 𝑇 Fn ℋ → ( 𝑥 ∈ ( ◡ 𝑇 “ { 0 } ) ↔ ( 𝑇 ‘ 𝑥 ) = 0 ) ) ) |
| 22 | 14 21 | vtoclga | ⊢ ( 𝐴 ∈ ℋ → ( 𝑇 Fn ℋ → ( 𝐴 ∈ ( ◡ 𝑇 “ { 0 } ) ↔ ( 𝑇 ‘ 𝐴 ) = 0 ) ) ) |
| 23 | 10 22 | mpan9 | ⊢ ( ( 𝑇 : ℋ ⟶ ℂ ∧ 𝐴 ∈ ℋ ) → ( 𝐴 ∈ ( ◡ 𝑇 “ { 0 } ) ↔ ( 𝑇 ‘ 𝐴 ) = 0 ) ) |
| 24 | 9 23 | bitrd | ⊢ ( ( 𝑇 : ℋ ⟶ ℂ ∧ 𝐴 ∈ ℋ ) → ( 𝐴 ∈ ( null ‘ 𝑇 ) ↔ ( 𝑇 ‘ 𝐴 ) = 0 ) ) |
| 25 | 24 | pm5.32da | ⊢ ( 𝑇 : ℋ ⟶ ℂ → ( ( 𝐴 ∈ ℋ ∧ 𝐴 ∈ ( null ‘ 𝑇 ) ) ↔ ( 𝐴 ∈ ℋ ∧ ( 𝑇 ‘ 𝐴 ) = 0 ) ) ) |
| 26 | 7 25 | bitrd | ⊢ ( 𝑇 : ℋ ⟶ ℂ → ( 𝐴 ∈ ( null ‘ 𝑇 ) ↔ ( 𝐴 ∈ ℋ ∧ ( 𝑇 ‘ 𝐴 ) = 0 ) ) ) |