This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplicative property of a linear Hilbert space functional. (Contributed by NM, 11-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lnfnl.1 | ⊢ 𝑇 ∈ LinFn | |
| Assertion | lnfnmuli | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnfnl.1 | ⊢ 𝑇 ∈ LinFn | |
| 2 | ax-hv0cl | ⊢ 0ℎ ∈ ℋ | |
| 3 | 1 | lnfnli | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 0ℎ ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 0ℎ ) ) = ( ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) + ( 𝑇 ‘ 0ℎ ) ) ) |
| 4 | 2 3 | mp3an3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 0ℎ ) ) = ( ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) + ( 𝑇 ‘ 0ℎ ) ) ) |
| 5 | hvmulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ℎ 𝐵 ) ∈ ℋ ) | |
| 6 | ax-hvaddid | ⊢ ( ( 𝐴 ·ℎ 𝐵 ) ∈ ℋ → ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 0ℎ ) = ( 𝐴 ·ℎ 𝐵 ) ) | |
| 7 | 5 6 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 0ℎ ) = ( 𝐴 ·ℎ 𝐵 ) ) |
| 8 | 7 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 0ℎ ) ) = ( 𝑇 ‘ ( 𝐴 ·ℎ 𝐵 ) ) ) |
| 9 | 1 | lnfn0i | ⊢ ( 𝑇 ‘ 0ℎ ) = 0 |
| 10 | 9 | oveq2i | ⊢ ( ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) + ( 𝑇 ‘ 0ℎ ) ) = ( ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) + 0 ) |
| 11 | 1 | lnfnfi | ⊢ 𝑇 : ℋ ⟶ ℂ |
| 12 | 11 | ffvelcdmi | ⊢ ( 𝐵 ∈ ℋ → ( 𝑇 ‘ 𝐵 ) ∈ ℂ ) |
| 13 | mulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑇 ‘ 𝐵 ) ∈ ℂ ) → ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) ∈ ℂ ) | |
| 14 | 12 13 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) ∈ ℂ ) |
| 15 | 14 | addridd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) + 0 ) = ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) ) |
| 16 | 10 15 | eqtrid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) + ( 𝑇 ‘ 0ℎ ) ) = ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) ) |
| 17 | 4 8 16 | 3eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) ) |