This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A continuous linear functional can be expressed as an inner product. Existence part of Theorem 3.9 of Beran p. 104. (Contributed by NM, 13-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nlelch.1 | |- T e. LinFn |
|
| nlelch.2 | |- T e. ContFn |
||
| Assertion | riesz3i | |- E. w e. ~H A. v e. ~H ( T ` v ) = ( v .ih w ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nlelch.1 | |- T e. LinFn |
|
| 2 | nlelch.2 | |- T e. ContFn |
|
| 3 | ax-hv0cl | |- 0h e. ~H |
|
| 4 | 1 | lnfnfi | |- T : ~H --> CC |
| 5 | fveq2 | |- ( ( _|_ ` ( null ` T ) ) = 0H -> ( _|_ ` ( _|_ ` ( null ` T ) ) ) = ( _|_ ` 0H ) ) |
|
| 6 | 1 2 | nlelchi | |- ( null ` T ) e. CH |
| 7 | 6 | ococi | |- ( _|_ ` ( _|_ ` ( null ` T ) ) ) = ( null ` T ) |
| 8 | choc0 | |- ( _|_ ` 0H ) = ~H |
|
| 9 | 5 7 8 | 3eqtr3g | |- ( ( _|_ ` ( null ` T ) ) = 0H -> ( null ` T ) = ~H ) |
| 10 | 9 | eleq2d | |- ( ( _|_ ` ( null ` T ) ) = 0H -> ( v e. ( null ` T ) <-> v e. ~H ) ) |
| 11 | 10 | biimpar | |- ( ( ( _|_ ` ( null ` T ) ) = 0H /\ v e. ~H ) -> v e. ( null ` T ) ) |
| 12 | elnlfn2 | |- ( ( T : ~H --> CC /\ v e. ( null ` T ) ) -> ( T ` v ) = 0 ) |
|
| 13 | 4 11 12 | sylancr | |- ( ( ( _|_ ` ( null ` T ) ) = 0H /\ v e. ~H ) -> ( T ` v ) = 0 ) |
| 14 | hi02 | |- ( v e. ~H -> ( v .ih 0h ) = 0 ) |
|
| 15 | 14 | adantl | |- ( ( ( _|_ ` ( null ` T ) ) = 0H /\ v e. ~H ) -> ( v .ih 0h ) = 0 ) |
| 16 | 13 15 | eqtr4d | |- ( ( ( _|_ ` ( null ` T ) ) = 0H /\ v e. ~H ) -> ( T ` v ) = ( v .ih 0h ) ) |
| 17 | 16 | ralrimiva | |- ( ( _|_ ` ( null ` T ) ) = 0H -> A. v e. ~H ( T ` v ) = ( v .ih 0h ) ) |
| 18 | oveq2 | |- ( w = 0h -> ( v .ih w ) = ( v .ih 0h ) ) |
|
| 19 | 18 | eqeq2d | |- ( w = 0h -> ( ( T ` v ) = ( v .ih w ) <-> ( T ` v ) = ( v .ih 0h ) ) ) |
| 20 | 19 | ralbidv | |- ( w = 0h -> ( A. v e. ~H ( T ` v ) = ( v .ih w ) <-> A. v e. ~H ( T ` v ) = ( v .ih 0h ) ) ) |
| 21 | 20 | rspcev | |- ( ( 0h e. ~H /\ A. v e. ~H ( T ` v ) = ( v .ih 0h ) ) -> E. w e. ~H A. v e. ~H ( T ` v ) = ( v .ih w ) ) |
| 22 | 3 17 21 | sylancr | |- ( ( _|_ ` ( null ` T ) ) = 0H -> E. w e. ~H A. v e. ~H ( T ` v ) = ( v .ih w ) ) |
| 23 | 6 | choccli | |- ( _|_ ` ( null ` T ) ) e. CH |
| 24 | 23 | chne0i | |- ( ( _|_ ` ( null ` T ) ) =/= 0H <-> E. u e. ( _|_ ` ( null ` T ) ) u =/= 0h ) |
| 25 | 23 | cheli | |- ( u e. ( _|_ ` ( null ` T ) ) -> u e. ~H ) |
| 26 | 4 | ffvelcdmi | |- ( u e. ~H -> ( T ` u ) e. CC ) |
| 27 | 26 | adantr | |- ( ( u e. ~H /\ u =/= 0h ) -> ( T ` u ) e. CC ) |
| 28 | hicl | |- ( ( u e. ~H /\ u e. ~H ) -> ( u .ih u ) e. CC ) |
|
| 29 | 28 | anidms | |- ( u e. ~H -> ( u .ih u ) e. CC ) |
| 30 | 29 | adantr | |- ( ( u e. ~H /\ u =/= 0h ) -> ( u .ih u ) e. CC ) |
| 31 | his6 | |- ( u e. ~H -> ( ( u .ih u ) = 0 <-> u = 0h ) ) |
|
| 32 | 31 | necon3bid | |- ( u e. ~H -> ( ( u .ih u ) =/= 0 <-> u =/= 0h ) ) |
| 33 | 32 | biimpar | |- ( ( u e. ~H /\ u =/= 0h ) -> ( u .ih u ) =/= 0 ) |
| 34 | 27 30 33 | divcld | |- ( ( u e. ~H /\ u =/= 0h ) -> ( ( T ` u ) / ( u .ih u ) ) e. CC ) |
| 35 | 34 | cjcld | |- ( ( u e. ~H /\ u =/= 0h ) -> ( * ` ( ( T ` u ) / ( u .ih u ) ) ) e. CC ) |
| 36 | simpl | |- ( ( u e. ~H /\ u =/= 0h ) -> u e. ~H ) |
|
| 37 | hvmulcl | |- ( ( ( * ` ( ( T ` u ) / ( u .ih u ) ) ) e. CC /\ u e. ~H ) -> ( ( * ` ( ( T ` u ) / ( u .ih u ) ) ) .h u ) e. ~H ) |
|
| 38 | 35 36 37 | syl2anc | |- ( ( u e. ~H /\ u =/= 0h ) -> ( ( * ` ( ( T ` u ) / ( u .ih u ) ) ) .h u ) e. ~H ) |
| 39 | 38 | adantll | |- ( ( ( u e. ( _|_ ` ( null ` T ) ) /\ u e. ~H ) /\ u =/= 0h ) -> ( ( * ` ( ( T ` u ) / ( u .ih u ) ) ) .h u ) e. ~H ) |
| 40 | hvmulcl | |- ( ( ( T ` u ) e. CC /\ v e. ~H ) -> ( ( T ` u ) .h v ) e. ~H ) |
|
| 41 | 26 40 | sylan | |- ( ( u e. ~H /\ v e. ~H ) -> ( ( T ` u ) .h v ) e. ~H ) |
| 42 | 4 | ffvelcdmi | |- ( v e. ~H -> ( T ` v ) e. CC ) |
| 43 | hvmulcl | |- ( ( ( T ` v ) e. CC /\ u e. ~H ) -> ( ( T ` v ) .h u ) e. ~H ) |
|
| 44 | 42 43 | sylan | |- ( ( v e. ~H /\ u e. ~H ) -> ( ( T ` v ) .h u ) e. ~H ) |
| 45 | 44 | ancoms | |- ( ( u e. ~H /\ v e. ~H ) -> ( ( T ` v ) .h u ) e. ~H ) |
| 46 | simpl | |- ( ( u e. ~H /\ v e. ~H ) -> u e. ~H ) |
|
| 47 | his2sub | |- ( ( ( ( T ` u ) .h v ) e. ~H /\ ( ( T ` v ) .h u ) e. ~H /\ u e. ~H ) -> ( ( ( ( T ` u ) .h v ) -h ( ( T ` v ) .h u ) ) .ih u ) = ( ( ( ( T ` u ) .h v ) .ih u ) - ( ( ( T ` v ) .h u ) .ih u ) ) ) |
|
| 48 | 41 45 46 47 | syl3anc | |- ( ( u e. ~H /\ v e. ~H ) -> ( ( ( ( T ` u ) .h v ) -h ( ( T ` v ) .h u ) ) .ih u ) = ( ( ( ( T ` u ) .h v ) .ih u ) - ( ( ( T ` v ) .h u ) .ih u ) ) ) |
| 49 | 26 | adantr | |- ( ( u e. ~H /\ v e. ~H ) -> ( T ` u ) e. CC ) |
| 50 | simpr | |- ( ( u e. ~H /\ v e. ~H ) -> v e. ~H ) |
|
| 51 | ax-his3 | |- ( ( ( T ` u ) e. CC /\ v e. ~H /\ u e. ~H ) -> ( ( ( T ` u ) .h v ) .ih u ) = ( ( T ` u ) x. ( v .ih u ) ) ) |
|
| 52 | 49 50 46 51 | syl3anc | |- ( ( u e. ~H /\ v e. ~H ) -> ( ( ( T ` u ) .h v ) .ih u ) = ( ( T ` u ) x. ( v .ih u ) ) ) |
| 53 | 42 | adantl | |- ( ( u e. ~H /\ v e. ~H ) -> ( T ` v ) e. CC ) |
| 54 | ax-his3 | |- ( ( ( T ` v ) e. CC /\ u e. ~H /\ u e. ~H ) -> ( ( ( T ` v ) .h u ) .ih u ) = ( ( T ` v ) x. ( u .ih u ) ) ) |
|
| 55 | 53 46 46 54 | syl3anc | |- ( ( u e. ~H /\ v e. ~H ) -> ( ( ( T ` v ) .h u ) .ih u ) = ( ( T ` v ) x. ( u .ih u ) ) ) |
| 56 | 52 55 | oveq12d | |- ( ( u e. ~H /\ v e. ~H ) -> ( ( ( ( T ` u ) .h v ) .ih u ) - ( ( ( T ` v ) .h u ) .ih u ) ) = ( ( ( T ` u ) x. ( v .ih u ) ) - ( ( T ` v ) x. ( u .ih u ) ) ) ) |
| 57 | 48 56 | eqtr2d | |- ( ( u e. ~H /\ v e. ~H ) -> ( ( ( T ` u ) x. ( v .ih u ) ) - ( ( T ` v ) x. ( u .ih u ) ) ) = ( ( ( ( T ` u ) .h v ) -h ( ( T ` v ) .h u ) ) .ih u ) ) |
| 58 | 57 | adantll | |- ( ( ( u e. ( _|_ ` ( null ` T ) ) /\ u e. ~H ) /\ v e. ~H ) -> ( ( ( T ` u ) x. ( v .ih u ) ) - ( ( T ` v ) x. ( u .ih u ) ) ) = ( ( ( ( T ` u ) .h v ) -h ( ( T ` v ) .h u ) ) .ih u ) ) |
| 59 | hvsubcl | |- ( ( ( ( T ` u ) .h v ) e. ~H /\ ( ( T ` v ) .h u ) e. ~H ) -> ( ( ( T ` u ) .h v ) -h ( ( T ` v ) .h u ) ) e. ~H ) |
|
| 60 | 41 45 59 | syl2anc | |- ( ( u e. ~H /\ v e. ~H ) -> ( ( ( T ` u ) .h v ) -h ( ( T ` v ) .h u ) ) e. ~H ) |
| 61 | 1 | lnfnsubi | |- ( ( ( ( T ` u ) .h v ) e. ~H /\ ( ( T ` v ) .h u ) e. ~H ) -> ( T ` ( ( ( T ` u ) .h v ) -h ( ( T ` v ) .h u ) ) ) = ( ( T ` ( ( T ` u ) .h v ) ) - ( T ` ( ( T ` v ) .h u ) ) ) ) |
| 62 | 41 45 61 | syl2anc | |- ( ( u e. ~H /\ v e. ~H ) -> ( T ` ( ( ( T ` u ) .h v ) -h ( ( T ` v ) .h u ) ) ) = ( ( T ` ( ( T ` u ) .h v ) ) - ( T ` ( ( T ` v ) .h u ) ) ) ) |
| 63 | 1 | lnfnmuli | |- ( ( ( T ` u ) e. CC /\ v e. ~H ) -> ( T ` ( ( T ` u ) .h v ) ) = ( ( T ` u ) x. ( T ` v ) ) ) |
| 64 | 26 63 | sylan | |- ( ( u e. ~H /\ v e. ~H ) -> ( T ` ( ( T ` u ) .h v ) ) = ( ( T ` u ) x. ( T ` v ) ) ) |
| 65 | 1 | lnfnmuli | |- ( ( ( T ` v ) e. CC /\ u e. ~H ) -> ( T ` ( ( T ` v ) .h u ) ) = ( ( T ` v ) x. ( T ` u ) ) ) |
| 66 | mulcom | |- ( ( ( T ` v ) e. CC /\ ( T ` u ) e. CC ) -> ( ( T ` v ) x. ( T ` u ) ) = ( ( T ` u ) x. ( T ` v ) ) ) |
|
| 67 | 26 66 | sylan2 | |- ( ( ( T ` v ) e. CC /\ u e. ~H ) -> ( ( T ` v ) x. ( T ` u ) ) = ( ( T ` u ) x. ( T ` v ) ) ) |
| 68 | 65 67 | eqtrd | |- ( ( ( T ` v ) e. CC /\ u e. ~H ) -> ( T ` ( ( T ` v ) .h u ) ) = ( ( T ` u ) x. ( T ` v ) ) ) |
| 69 | 42 68 | sylan | |- ( ( v e. ~H /\ u e. ~H ) -> ( T ` ( ( T ` v ) .h u ) ) = ( ( T ` u ) x. ( T ` v ) ) ) |
| 70 | 69 | ancoms | |- ( ( u e. ~H /\ v e. ~H ) -> ( T ` ( ( T ` v ) .h u ) ) = ( ( T ` u ) x. ( T ` v ) ) ) |
| 71 | 64 70 | oveq12d | |- ( ( u e. ~H /\ v e. ~H ) -> ( ( T ` ( ( T ` u ) .h v ) ) - ( T ` ( ( T ` v ) .h u ) ) ) = ( ( ( T ` u ) x. ( T ` v ) ) - ( ( T ` u ) x. ( T ` v ) ) ) ) |
| 72 | mulcl | |- ( ( ( T ` u ) e. CC /\ ( T ` v ) e. CC ) -> ( ( T ` u ) x. ( T ` v ) ) e. CC ) |
|
| 73 | 26 42 72 | syl2an | |- ( ( u e. ~H /\ v e. ~H ) -> ( ( T ` u ) x. ( T ` v ) ) e. CC ) |
| 74 | 73 | subidd | |- ( ( u e. ~H /\ v e. ~H ) -> ( ( ( T ` u ) x. ( T ` v ) ) - ( ( T ` u ) x. ( T ` v ) ) ) = 0 ) |
| 75 | 62 71 74 | 3eqtrd | |- ( ( u e. ~H /\ v e. ~H ) -> ( T ` ( ( ( T ` u ) .h v ) -h ( ( T ` v ) .h u ) ) ) = 0 ) |
| 76 | elnlfn | |- ( T : ~H --> CC -> ( ( ( ( T ` u ) .h v ) -h ( ( T ` v ) .h u ) ) e. ( null ` T ) <-> ( ( ( ( T ` u ) .h v ) -h ( ( T ` v ) .h u ) ) e. ~H /\ ( T ` ( ( ( T ` u ) .h v ) -h ( ( T ` v ) .h u ) ) ) = 0 ) ) ) |
|
| 77 | 4 76 | ax-mp | |- ( ( ( ( T ` u ) .h v ) -h ( ( T ` v ) .h u ) ) e. ( null ` T ) <-> ( ( ( ( T ` u ) .h v ) -h ( ( T ` v ) .h u ) ) e. ~H /\ ( T ` ( ( ( T ` u ) .h v ) -h ( ( T ` v ) .h u ) ) ) = 0 ) ) |
| 78 | 60 75 77 | sylanbrc | |- ( ( u e. ~H /\ v e. ~H ) -> ( ( ( T ` u ) .h v ) -h ( ( T ` v ) .h u ) ) e. ( null ` T ) ) |
| 79 | 6 | chssii | |- ( null ` T ) C_ ~H |
| 80 | ocorth | |- ( ( null ` T ) C_ ~H -> ( ( ( ( ( T ` u ) .h v ) -h ( ( T ` v ) .h u ) ) e. ( null ` T ) /\ u e. ( _|_ ` ( null ` T ) ) ) -> ( ( ( ( T ` u ) .h v ) -h ( ( T ` v ) .h u ) ) .ih u ) = 0 ) ) |
|
| 81 | 79 80 | ax-mp | |- ( ( ( ( ( T ` u ) .h v ) -h ( ( T ` v ) .h u ) ) e. ( null ` T ) /\ u e. ( _|_ ` ( null ` T ) ) ) -> ( ( ( ( T ` u ) .h v ) -h ( ( T ` v ) .h u ) ) .ih u ) = 0 ) |
| 82 | 78 81 | sylan | |- ( ( ( u e. ~H /\ v e. ~H ) /\ u e. ( _|_ ` ( null ` T ) ) ) -> ( ( ( ( T ` u ) .h v ) -h ( ( T ` v ) .h u ) ) .ih u ) = 0 ) |
| 83 | 82 | ancoms | |- ( ( u e. ( _|_ ` ( null ` T ) ) /\ ( u e. ~H /\ v e. ~H ) ) -> ( ( ( ( T ` u ) .h v ) -h ( ( T ` v ) .h u ) ) .ih u ) = 0 ) |
| 84 | 83 | anassrs | |- ( ( ( u e. ( _|_ ` ( null ` T ) ) /\ u e. ~H ) /\ v e. ~H ) -> ( ( ( ( T ` u ) .h v ) -h ( ( T ` v ) .h u ) ) .ih u ) = 0 ) |
| 85 | 58 84 | eqtrd | |- ( ( ( u e. ( _|_ ` ( null ` T ) ) /\ u e. ~H ) /\ v e. ~H ) -> ( ( ( T ` u ) x. ( v .ih u ) ) - ( ( T ` v ) x. ( u .ih u ) ) ) = 0 ) |
| 86 | hicl | |- ( ( v e. ~H /\ u e. ~H ) -> ( v .ih u ) e. CC ) |
|
| 87 | 86 | ancoms | |- ( ( u e. ~H /\ v e. ~H ) -> ( v .ih u ) e. CC ) |
| 88 | 49 87 | mulcld | |- ( ( u e. ~H /\ v e. ~H ) -> ( ( T ` u ) x. ( v .ih u ) ) e. CC ) |
| 89 | mulcl | |- ( ( ( T ` v ) e. CC /\ ( u .ih u ) e. CC ) -> ( ( T ` v ) x. ( u .ih u ) ) e. CC ) |
|
| 90 | 42 29 89 | syl2anr | |- ( ( u e. ~H /\ v e. ~H ) -> ( ( T ` v ) x. ( u .ih u ) ) e. CC ) |
| 91 | 88 90 | subeq0ad | |- ( ( u e. ~H /\ v e. ~H ) -> ( ( ( ( T ` u ) x. ( v .ih u ) ) - ( ( T ` v ) x. ( u .ih u ) ) ) = 0 <-> ( ( T ` u ) x. ( v .ih u ) ) = ( ( T ` v ) x. ( u .ih u ) ) ) ) |
| 92 | 91 | adantll | |- ( ( ( u e. ( _|_ ` ( null ` T ) ) /\ u e. ~H ) /\ v e. ~H ) -> ( ( ( ( T ` u ) x. ( v .ih u ) ) - ( ( T ` v ) x. ( u .ih u ) ) ) = 0 <-> ( ( T ` u ) x. ( v .ih u ) ) = ( ( T ` v ) x. ( u .ih u ) ) ) ) |
| 93 | 85 92 | mpbid | |- ( ( ( u e. ( _|_ ` ( null ` T ) ) /\ u e. ~H ) /\ v e. ~H ) -> ( ( T ` u ) x. ( v .ih u ) ) = ( ( T ` v ) x. ( u .ih u ) ) ) |
| 94 | 93 | adantlr | |- ( ( ( ( u e. ( _|_ ` ( null ` T ) ) /\ u e. ~H ) /\ u =/= 0h ) /\ v e. ~H ) -> ( ( T ` u ) x. ( v .ih u ) ) = ( ( T ` v ) x. ( u .ih u ) ) ) |
| 95 | 88 | adantlr | |- ( ( ( u e. ~H /\ u =/= 0h ) /\ v e. ~H ) -> ( ( T ` u ) x. ( v .ih u ) ) e. CC ) |
| 96 | 42 | adantl | |- ( ( ( u e. ~H /\ u =/= 0h ) /\ v e. ~H ) -> ( T ` v ) e. CC ) |
| 97 | 30 33 | jca | |- ( ( u e. ~H /\ u =/= 0h ) -> ( ( u .ih u ) e. CC /\ ( u .ih u ) =/= 0 ) ) |
| 98 | 97 | adantr | |- ( ( ( u e. ~H /\ u =/= 0h ) /\ v e. ~H ) -> ( ( u .ih u ) e. CC /\ ( u .ih u ) =/= 0 ) ) |
| 99 | divmul3 | |- ( ( ( ( T ` u ) x. ( v .ih u ) ) e. CC /\ ( T ` v ) e. CC /\ ( ( u .ih u ) e. CC /\ ( u .ih u ) =/= 0 ) ) -> ( ( ( ( T ` u ) x. ( v .ih u ) ) / ( u .ih u ) ) = ( T ` v ) <-> ( ( T ` u ) x. ( v .ih u ) ) = ( ( T ` v ) x. ( u .ih u ) ) ) ) |
|
| 100 | 95 96 98 99 | syl3anc | |- ( ( ( u e. ~H /\ u =/= 0h ) /\ v e. ~H ) -> ( ( ( ( T ` u ) x. ( v .ih u ) ) / ( u .ih u ) ) = ( T ` v ) <-> ( ( T ` u ) x. ( v .ih u ) ) = ( ( T ` v ) x. ( u .ih u ) ) ) ) |
| 101 | 100 | adantlll | |- ( ( ( ( u e. ( _|_ ` ( null ` T ) ) /\ u e. ~H ) /\ u =/= 0h ) /\ v e. ~H ) -> ( ( ( ( T ` u ) x. ( v .ih u ) ) / ( u .ih u ) ) = ( T ` v ) <-> ( ( T ` u ) x. ( v .ih u ) ) = ( ( T ` v ) x. ( u .ih u ) ) ) ) |
| 102 | 94 101 | mpbird | |- ( ( ( ( u e. ( _|_ ` ( null ` T ) ) /\ u e. ~H ) /\ u =/= 0h ) /\ v e. ~H ) -> ( ( ( T ` u ) x. ( v .ih u ) ) / ( u .ih u ) ) = ( T ` v ) ) |
| 103 | 27 | adantr | |- ( ( ( u e. ~H /\ u =/= 0h ) /\ v e. ~H ) -> ( T ` u ) e. CC ) |
| 104 | 87 | adantlr | |- ( ( ( u e. ~H /\ u =/= 0h ) /\ v e. ~H ) -> ( v .ih u ) e. CC ) |
| 105 | div23 | |- ( ( ( T ` u ) e. CC /\ ( v .ih u ) e. CC /\ ( ( u .ih u ) e. CC /\ ( u .ih u ) =/= 0 ) ) -> ( ( ( T ` u ) x. ( v .ih u ) ) / ( u .ih u ) ) = ( ( ( T ` u ) / ( u .ih u ) ) x. ( v .ih u ) ) ) |
|
| 106 | 103 104 98 105 | syl3anc | |- ( ( ( u e. ~H /\ u =/= 0h ) /\ v e. ~H ) -> ( ( ( T ` u ) x. ( v .ih u ) ) / ( u .ih u ) ) = ( ( ( T ` u ) / ( u .ih u ) ) x. ( v .ih u ) ) ) |
| 107 | 34 | adantr | |- ( ( ( u e. ~H /\ u =/= 0h ) /\ v e. ~H ) -> ( ( T ` u ) / ( u .ih u ) ) e. CC ) |
| 108 | simpr | |- ( ( ( u e. ~H /\ u =/= 0h ) /\ v e. ~H ) -> v e. ~H ) |
|
| 109 | simpll | |- ( ( ( u e. ~H /\ u =/= 0h ) /\ v e. ~H ) -> u e. ~H ) |
|
| 110 | his52 | |- ( ( ( ( T ` u ) / ( u .ih u ) ) e. CC /\ v e. ~H /\ u e. ~H ) -> ( v .ih ( ( * ` ( ( T ` u ) / ( u .ih u ) ) ) .h u ) ) = ( ( ( T ` u ) / ( u .ih u ) ) x. ( v .ih u ) ) ) |
|
| 111 | 107 108 109 110 | syl3anc | |- ( ( ( u e. ~H /\ u =/= 0h ) /\ v e. ~H ) -> ( v .ih ( ( * ` ( ( T ` u ) / ( u .ih u ) ) ) .h u ) ) = ( ( ( T ` u ) / ( u .ih u ) ) x. ( v .ih u ) ) ) |
| 112 | 106 111 | eqtr4d | |- ( ( ( u e. ~H /\ u =/= 0h ) /\ v e. ~H ) -> ( ( ( T ` u ) x. ( v .ih u ) ) / ( u .ih u ) ) = ( v .ih ( ( * ` ( ( T ` u ) / ( u .ih u ) ) ) .h u ) ) ) |
| 113 | 112 | adantlll | |- ( ( ( ( u e. ( _|_ ` ( null ` T ) ) /\ u e. ~H ) /\ u =/= 0h ) /\ v e. ~H ) -> ( ( ( T ` u ) x. ( v .ih u ) ) / ( u .ih u ) ) = ( v .ih ( ( * ` ( ( T ` u ) / ( u .ih u ) ) ) .h u ) ) ) |
| 114 | 102 113 | eqtr3d | |- ( ( ( ( u e. ( _|_ ` ( null ` T ) ) /\ u e. ~H ) /\ u =/= 0h ) /\ v e. ~H ) -> ( T ` v ) = ( v .ih ( ( * ` ( ( T ` u ) / ( u .ih u ) ) ) .h u ) ) ) |
| 115 | 114 | ralrimiva | |- ( ( ( u e. ( _|_ ` ( null ` T ) ) /\ u e. ~H ) /\ u =/= 0h ) -> A. v e. ~H ( T ` v ) = ( v .ih ( ( * ` ( ( T ` u ) / ( u .ih u ) ) ) .h u ) ) ) |
| 116 | oveq2 | |- ( w = ( ( * ` ( ( T ` u ) / ( u .ih u ) ) ) .h u ) -> ( v .ih w ) = ( v .ih ( ( * ` ( ( T ` u ) / ( u .ih u ) ) ) .h u ) ) ) |
|
| 117 | 116 | eqeq2d | |- ( w = ( ( * ` ( ( T ` u ) / ( u .ih u ) ) ) .h u ) -> ( ( T ` v ) = ( v .ih w ) <-> ( T ` v ) = ( v .ih ( ( * ` ( ( T ` u ) / ( u .ih u ) ) ) .h u ) ) ) ) |
| 118 | 117 | ralbidv | |- ( w = ( ( * ` ( ( T ` u ) / ( u .ih u ) ) ) .h u ) -> ( A. v e. ~H ( T ` v ) = ( v .ih w ) <-> A. v e. ~H ( T ` v ) = ( v .ih ( ( * ` ( ( T ` u ) / ( u .ih u ) ) ) .h u ) ) ) ) |
| 119 | 118 | rspcev | |- ( ( ( ( * ` ( ( T ` u ) / ( u .ih u ) ) ) .h u ) e. ~H /\ A. v e. ~H ( T ` v ) = ( v .ih ( ( * ` ( ( T ` u ) / ( u .ih u ) ) ) .h u ) ) ) -> E. w e. ~H A. v e. ~H ( T ` v ) = ( v .ih w ) ) |
| 120 | 39 115 119 | syl2anc | |- ( ( ( u e. ( _|_ ` ( null ` T ) ) /\ u e. ~H ) /\ u =/= 0h ) -> E. w e. ~H A. v e. ~H ( T ` v ) = ( v .ih w ) ) |
| 121 | 120 | ex | |- ( ( u e. ( _|_ ` ( null ` T ) ) /\ u e. ~H ) -> ( u =/= 0h -> E. w e. ~H A. v e. ~H ( T ` v ) = ( v .ih w ) ) ) |
| 122 | 25 121 | mpdan | |- ( u e. ( _|_ ` ( null ` T ) ) -> ( u =/= 0h -> E. w e. ~H A. v e. ~H ( T ` v ) = ( v .ih w ) ) ) |
| 123 | 122 | rexlimiv | |- ( E. u e. ( _|_ ` ( null ` T ) ) u =/= 0h -> E. w e. ~H A. v e. ~H ( T ` v ) = ( v .ih w ) ) |
| 124 | 24 123 | sylbi | |- ( ( _|_ ` ( null ` T ) ) =/= 0H -> E. w e. ~H A. v e. ~H ( T ` v ) = ( v .ih w ) ) |
| 125 | 22 124 | pm2.61ine | |- E. w e. ~H A. v e. ~H ( T ` v ) = ( v .ih w ) |