This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Members of a subset and its complement are orthogonal. (Contributed by NM, 9-Aug-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ocorth | ⊢ ( 𝐻 ⊆ ℋ → ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) → ( 𝐴 ·ih 𝐵 ) = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocel | ⊢ ( 𝐻 ⊆ ℋ → ( 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ↔ ( 𝐵 ∈ ℋ ∧ ∀ 𝑥 ∈ 𝐻 ( 𝐵 ·ih 𝑥 ) = 0 ) ) ) | |
| 2 | 1 | simplbda | ⊢ ( ( 𝐻 ⊆ ℋ ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) → ∀ 𝑥 ∈ 𝐻 ( 𝐵 ·ih 𝑥 ) = 0 ) |
| 3 | 2 | adantl | ⊢ ( ( ( 𝐻 ⊆ ℋ ∧ 𝐴 ∈ 𝐻 ) ∧ ( 𝐻 ⊆ ℋ ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ) → ∀ 𝑥 ∈ 𝐻 ( 𝐵 ·ih 𝑥 ) = 0 ) |
| 4 | oveq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝐵 ·ih 𝑥 ) = ( 𝐵 ·ih 𝐴 ) ) | |
| 5 | 4 | eqeq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝐵 ·ih 𝑥 ) = 0 ↔ ( 𝐵 ·ih 𝐴 ) = 0 ) ) |
| 6 | 5 | rspcv | ⊢ ( 𝐴 ∈ 𝐻 → ( ∀ 𝑥 ∈ 𝐻 ( 𝐵 ·ih 𝑥 ) = 0 → ( 𝐵 ·ih 𝐴 ) = 0 ) ) |
| 7 | 6 | ad2antlr | ⊢ ( ( ( 𝐻 ⊆ ℋ ∧ 𝐴 ∈ 𝐻 ) ∧ ( 𝐻 ⊆ ℋ ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ) → ( ∀ 𝑥 ∈ 𝐻 ( 𝐵 ·ih 𝑥 ) = 0 → ( 𝐵 ·ih 𝐴 ) = 0 ) ) |
| 8 | ssel2 | ⊢ ( ( 𝐻 ⊆ ℋ ∧ 𝐴 ∈ 𝐻 ) → 𝐴 ∈ ℋ ) | |
| 9 | ocss | ⊢ ( 𝐻 ⊆ ℋ → ( ⊥ ‘ 𝐻 ) ⊆ ℋ ) | |
| 10 | 9 | sselda | ⊢ ( ( 𝐻 ⊆ ℋ ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) → 𝐵 ∈ ℋ ) |
| 11 | orthcom | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ih 𝐵 ) = 0 ↔ ( 𝐵 ·ih 𝐴 ) = 0 ) ) | |
| 12 | 8 10 11 | syl2an | ⊢ ( ( ( 𝐻 ⊆ ℋ ∧ 𝐴 ∈ 𝐻 ) ∧ ( 𝐻 ⊆ ℋ ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ) → ( ( 𝐴 ·ih 𝐵 ) = 0 ↔ ( 𝐵 ·ih 𝐴 ) = 0 ) ) |
| 13 | 7 12 | sylibrd | ⊢ ( ( ( 𝐻 ⊆ ℋ ∧ 𝐴 ∈ 𝐻 ) ∧ ( 𝐻 ⊆ ℋ ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ) → ( ∀ 𝑥 ∈ 𝐻 ( 𝐵 ·ih 𝑥 ) = 0 → ( 𝐴 ·ih 𝐵 ) = 0 ) ) |
| 14 | 3 13 | mpd | ⊢ ( ( ( 𝐻 ⊆ ℋ ∧ 𝐴 ∈ 𝐻 ) ∧ ( 𝐻 ⊆ ℋ ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ) → ( 𝐴 ·ih 𝐵 ) = 0 ) |
| 15 | 14 | anandis | ⊢ ( ( 𝐻 ⊆ ℋ ∧ ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ) → ( 𝐴 ·ih 𝐵 ) = 0 ) |
| 16 | 15 | ex | ⊢ ( 𝐻 ⊆ ℋ → ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) → ( 𝐴 ·ih 𝐵 ) = 0 ) ) |