This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for Proposition 9-3.7 of Gleason p. 124. (Contributed by NM, 30-Apr-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | reclempr.1 | ⊢ 𝐵 = { 𝑥 ∣ ∃ 𝑦 ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) } | |
| Assertion | reclem2pr | ⊢ ( 𝐴 ∈ P → 𝐵 ∈ P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reclempr.1 | ⊢ 𝐵 = { 𝑥 ∣ ∃ 𝑦 ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) } | |
| 2 | prpssnq | ⊢ ( 𝐴 ∈ P → 𝐴 ⊊ Q ) | |
| 3 | pssnel | ⊢ ( 𝐴 ⊊ Q → ∃ 𝑥 ( 𝑥 ∈ Q ∧ ¬ 𝑥 ∈ 𝐴 ) ) | |
| 4 | recclnq | ⊢ ( 𝑥 ∈ Q → ( *Q ‘ 𝑥 ) ∈ Q ) | |
| 5 | nsmallnq | ⊢ ( ( *Q ‘ 𝑥 ) ∈ Q → ∃ 𝑧 𝑧 <Q ( *Q ‘ 𝑥 ) ) | |
| 6 | 4 5 | syl | ⊢ ( 𝑥 ∈ Q → ∃ 𝑧 𝑧 <Q ( *Q ‘ 𝑥 ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝑥 ∈ Q ∧ ¬ 𝑥 ∈ 𝐴 ) → ∃ 𝑧 𝑧 <Q ( *Q ‘ 𝑥 ) ) |
| 8 | recrecnq | ⊢ ( 𝑥 ∈ Q → ( *Q ‘ ( *Q ‘ 𝑥 ) ) = 𝑥 ) | |
| 9 | 8 | eleq1d | ⊢ ( 𝑥 ∈ Q → ( ( *Q ‘ ( *Q ‘ 𝑥 ) ) ∈ 𝐴 ↔ 𝑥 ∈ 𝐴 ) ) |
| 10 | 9 | notbid | ⊢ ( 𝑥 ∈ Q → ( ¬ ( *Q ‘ ( *Q ‘ 𝑥 ) ) ∈ 𝐴 ↔ ¬ 𝑥 ∈ 𝐴 ) ) |
| 11 | 10 | anbi2d | ⊢ ( 𝑥 ∈ Q → ( ( 𝑧 <Q ( *Q ‘ 𝑥 ) ∧ ¬ ( *Q ‘ ( *Q ‘ 𝑥 ) ) ∈ 𝐴 ) ↔ ( 𝑧 <Q ( *Q ‘ 𝑥 ) ∧ ¬ 𝑥 ∈ 𝐴 ) ) ) |
| 12 | fvex | ⊢ ( *Q ‘ 𝑥 ) ∈ V | |
| 13 | breq2 | ⊢ ( 𝑦 = ( *Q ‘ 𝑥 ) → ( 𝑧 <Q 𝑦 ↔ 𝑧 <Q ( *Q ‘ 𝑥 ) ) ) | |
| 14 | fveq2 | ⊢ ( 𝑦 = ( *Q ‘ 𝑥 ) → ( *Q ‘ 𝑦 ) = ( *Q ‘ ( *Q ‘ 𝑥 ) ) ) | |
| 15 | 14 | eleq1d | ⊢ ( 𝑦 = ( *Q ‘ 𝑥 ) → ( ( *Q ‘ 𝑦 ) ∈ 𝐴 ↔ ( *Q ‘ ( *Q ‘ 𝑥 ) ) ∈ 𝐴 ) ) |
| 16 | 15 | notbid | ⊢ ( 𝑦 = ( *Q ‘ 𝑥 ) → ( ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ↔ ¬ ( *Q ‘ ( *Q ‘ 𝑥 ) ) ∈ 𝐴 ) ) |
| 17 | 13 16 | anbi12d | ⊢ ( 𝑦 = ( *Q ‘ 𝑥 ) → ( ( 𝑧 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ↔ ( 𝑧 <Q ( *Q ‘ 𝑥 ) ∧ ¬ ( *Q ‘ ( *Q ‘ 𝑥 ) ) ∈ 𝐴 ) ) ) |
| 18 | 12 17 | spcev | ⊢ ( ( 𝑧 <Q ( *Q ‘ 𝑥 ) ∧ ¬ ( *Q ‘ ( *Q ‘ 𝑥 ) ) ∈ 𝐴 ) → ∃ 𝑦 ( 𝑧 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ) |
| 19 | 11 18 | biimtrrdi | ⊢ ( 𝑥 ∈ Q → ( ( 𝑧 <Q ( *Q ‘ 𝑥 ) ∧ ¬ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ( 𝑧 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ) ) |
| 20 | vex | ⊢ 𝑧 ∈ V | |
| 21 | breq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 <Q 𝑦 ↔ 𝑧 <Q 𝑦 ) ) | |
| 22 | 21 | anbi1d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ↔ ( 𝑧 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ) ) |
| 23 | 22 | exbidv | ⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑦 ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ↔ ∃ 𝑦 ( 𝑧 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ) ) |
| 24 | 20 23 1 | elab2 | ⊢ ( 𝑧 ∈ 𝐵 ↔ ∃ 𝑦 ( 𝑧 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ) |
| 25 | 19 24 | imbitrrdi | ⊢ ( 𝑥 ∈ Q → ( ( 𝑧 <Q ( *Q ‘ 𝑥 ) ∧ ¬ 𝑥 ∈ 𝐴 ) → 𝑧 ∈ 𝐵 ) ) |
| 26 | 25 | expcomd | ⊢ ( 𝑥 ∈ Q → ( ¬ 𝑥 ∈ 𝐴 → ( 𝑧 <Q ( *Q ‘ 𝑥 ) → 𝑧 ∈ 𝐵 ) ) ) |
| 27 | 26 | imp | ⊢ ( ( 𝑥 ∈ Q ∧ ¬ 𝑥 ∈ 𝐴 ) → ( 𝑧 <Q ( *Q ‘ 𝑥 ) → 𝑧 ∈ 𝐵 ) ) |
| 28 | 27 | eximdv | ⊢ ( ( 𝑥 ∈ Q ∧ ¬ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑧 𝑧 <Q ( *Q ‘ 𝑥 ) → ∃ 𝑧 𝑧 ∈ 𝐵 ) ) |
| 29 | 7 28 | mpd | ⊢ ( ( 𝑥 ∈ Q ∧ ¬ 𝑥 ∈ 𝐴 ) → ∃ 𝑧 𝑧 ∈ 𝐵 ) |
| 30 | n0 | ⊢ ( 𝐵 ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ 𝐵 ) | |
| 31 | 29 30 | sylibr | ⊢ ( ( 𝑥 ∈ Q ∧ ¬ 𝑥 ∈ 𝐴 ) → 𝐵 ≠ ∅ ) |
| 32 | 31 | exlimiv | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ Q ∧ ¬ 𝑥 ∈ 𝐴 ) → 𝐵 ≠ ∅ ) |
| 33 | 2 3 32 | 3syl | ⊢ ( 𝐴 ∈ P → 𝐵 ≠ ∅ ) |
| 34 | 0pss | ⊢ ( ∅ ⊊ 𝐵 ↔ 𝐵 ≠ ∅ ) | |
| 35 | 33 34 | sylibr | ⊢ ( 𝐴 ∈ P → ∅ ⊊ 𝐵 ) |
| 36 | prn0 | ⊢ ( 𝐴 ∈ P → 𝐴 ≠ ∅ ) | |
| 37 | elprnq | ⊢ ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ Q ) | |
| 38 | recrecnq | ⊢ ( 𝑧 ∈ Q → ( *Q ‘ ( *Q ‘ 𝑧 ) ) = 𝑧 ) | |
| 39 | 38 | eleq1d | ⊢ ( 𝑧 ∈ Q → ( ( *Q ‘ ( *Q ‘ 𝑧 ) ) ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) |
| 40 | 39 | anbi2d | ⊢ ( 𝑧 ∈ Q → ( ( 𝐴 ∈ P ∧ ( *Q ‘ ( *Q ‘ 𝑧 ) ) ∈ 𝐴 ) ↔ ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) ) ) |
| 41 | 37 40 | syl | ⊢ ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐴 ∈ P ∧ ( *Q ‘ ( *Q ‘ 𝑧 ) ) ∈ 𝐴 ) ↔ ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) ) ) |
| 42 | fvex | ⊢ ( *Q ‘ 𝑧 ) ∈ V | |
| 43 | fveq2 | ⊢ ( 𝑥 = ( *Q ‘ 𝑧 ) → ( *Q ‘ 𝑥 ) = ( *Q ‘ ( *Q ‘ 𝑧 ) ) ) | |
| 44 | 43 | eleq1d | ⊢ ( 𝑥 = ( *Q ‘ 𝑧 ) → ( ( *Q ‘ 𝑥 ) ∈ 𝐴 ↔ ( *Q ‘ ( *Q ‘ 𝑧 ) ) ∈ 𝐴 ) ) |
| 45 | 44 | anbi2d | ⊢ ( 𝑥 = ( *Q ‘ 𝑧 ) → ( ( 𝐴 ∈ P ∧ ( *Q ‘ 𝑥 ) ∈ 𝐴 ) ↔ ( 𝐴 ∈ P ∧ ( *Q ‘ ( *Q ‘ 𝑧 ) ) ∈ 𝐴 ) ) ) |
| 46 | 42 45 | spcev | ⊢ ( ( 𝐴 ∈ P ∧ ( *Q ‘ ( *Q ‘ 𝑧 ) ) ∈ 𝐴 ) → ∃ 𝑥 ( 𝐴 ∈ P ∧ ( *Q ‘ 𝑥 ) ∈ 𝐴 ) ) |
| 47 | 41 46 | biimtrrdi | ⊢ ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) → ∃ 𝑥 ( 𝐴 ∈ P ∧ ( *Q ‘ 𝑥 ) ∈ 𝐴 ) ) ) |
| 48 | 47 | pm2.43i | ⊢ ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) → ∃ 𝑥 ( 𝐴 ∈ P ∧ ( *Q ‘ 𝑥 ) ∈ 𝐴 ) ) |
| 49 | elprnq | ⊢ ( ( 𝐴 ∈ P ∧ ( *Q ‘ 𝑥 ) ∈ 𝐴 ) → ( *Q ‘ 𝑥 ) ∈ Q ) | |
| 50 | dmrecnq | ⊢ dom *Q = Q | |
| 51 | 0nnq | ⊢ ¬ ∅ ∈ Q | |
| 52 | 50 51 | ndmfvrcl | ⊢ ( ( *Q ‘ 𝑥 ) ∈ Q → 𝑥 ∈ Q ) |
| 53 | 49 52 | syl | ⊢ ( ( 𝐴 ∈ P ∧ ( *Q ‘ 𝑥 ) ∈ 𝐴 ) → 𝑥 ∈ Q ) |
| 54 | ltrnq | ⊢ ( 𝑥 <Q 𝑦 ↔ ( *Q ‘ 𝑦 ) <Q ( *Q ‘ 𝑥 ) ) | |
| 55 | prcdnq | ⊢ ( ( 𝐴 ∈ P ∧ ( *Q ‘ 𝑥 ) ∈ 𝐴 ) → ( ( *Q ‘ 𝑦 ) <Q ( *Q ‘ 𝑥 ) → ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ) | |
| 56 | 54 55 | biimtrid | ⊢ ( ( 𝐴 ∈ P ∧ ( *Q ‘ 𝑥 ) ∈ 𝐴 ) → ( 𝑥 <Q 𝑦 → ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ) |
| 57 | 56 | alrimiv | ⊢ ( ( 𝐴 ∈ P ∧ ( *Q ‘ 𝑥 ) ∈ 𝐴 ) → ∀ 𝑦 ( 𝑥 <Q 𝑦 → ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ) |
| 58 | 1 | eqabri | ⊢ ( 𝑥 ∈ 𝐵 ↔ ∃ 𝑦 ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ) |
| 59 | exanali | ⊢ ( ∃ 𝑦 ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ↔ ¬ ∀ 𝑦 ( 𝑥 <Q 𝑦 → ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ) | |
| 60 | 58 59 | bitri | ⊢ ( 𝑥 ∈ 𝐵 ↔ ¬ ∀ 𝑦 ( 𝑥 <Q 𝑦 → ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ) |
| 61 | 60 | con2bii | ⊢ ( ∀ 𝑦 ( 𝑥 <Q 𝑦 → ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ↔ ¬ 𝑥 ∈ 𝐵 ) |
| 62 | 57 61 | sylib | ⊢ ( ( 𝐴 ∈ P ∧ ( *Q ‘ 𝑥 ) ∈ 𝐴 ) → ¬ 𝑥 ∈ 𝐵 ) |
| 63 | 53 62 | jca | ⊢ ( ( 𝐴 ∈ P ∧ ( *Q ‘ 𝑥 ) ∈ 𝐴 ) → ( 𝑥 ∈ Q ∧ ¬ 𝑥 ∈ 𝐵 ) ) |
| 64 | 63 | eximi | ⊢ ( ∃ 𝑥 ( 𝐴 ∈ P ∧ ( *Q ‘ 𝑥 ) ∈ 𝐴 ) → ∃ 𝑥 ( 𝑥 ∈ Q ∧ ¬ 𝑥 ∈ 𝐵 ) ) |
| 65 | 48 64 | syl | ⊢ ( ( 𝐴 ∈ P ∧ 𝑧 ∈ 𝐴 ) → ∃ 𝑥 ( 𝑥 ∈ Q ∧ ¬ 𝑥 ∈ 𝐵 ) ) |
| 66 | 65 | ex | ⊢ ( 𝐴 ∈ P → ( 𝑧 ∈ 𝐴 → ∃ 𝑥 ( 𝑥 ∈ Q ∧ ¬ 𝑥 ∈ 𝐵 ) ) ) |
| 67 | 66 | exlimdv | ⊢ ( 𝐴 ∈ P → ( ∃ 𝑧 𝑧 ∈ 𝐴 → ∃ 𝑥 ( 𝑥 ∈ Q ∧ ¬ 𝑥 ∈ 𝐵 ) ) ) |
| 68 | n0 | ⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ 𝐴 ) | |
| 69 | nss | ⊢ ( ¬ Q ⊆ 𝐵 ↔ ∃ 𝑥 ( 𝑥 ∈ Q ∧ ¬ 𝑥 ∈ 𝐵 ) ) | |
| 70 | 67 68 69 | 3imtr4g | ⊢ ( 𝐴 ∈ P → ( 𝐴 ≠ ∅ → ¬ Q ⊆ 𝐵 ) ) |
| 71 | 36 70 | mpd | ⊢ ( 𝐴 ∈ P → ¬ Q ⊆ 𝐵 ) |
| 72 | ltrelnq | ⊢ <Q ⊆ ( Q × Q ) | |
| 73 | 72 | brel | ⊢ ( 𝑥 <Q 𝑦 → ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ) |
| 74 | 73 | simpld | ⊢ ( 𝑥 <Q 𝑦 → 𝑥 ∈ Q ) |
| 75 | 74 | adantr | ⊢ ( ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) → 𝑥 ∈ Q ) |
| 76 | 75 | exlimiv | ⊢ ( ∃ 𝑦 ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) → 𝑥 ∈ Q ) |
| 77 | 58 76 | sylbi | ⊢ ( 𝑥 ∈ 𝐵 → 𝑥 ∈ Q ) |
| 78 | 77 | ssriv | ⊢ 𝐵 ⊆ Q |
| 79 | 71 78 | jctil | ⊢ ( 𝐴 ∈ P → ( 𝐵 ⊆ Q ∧ ¬ Q ⊆ 𝐵 ) ) |
| 80 | dfpss3 | ⊢ ( 𝐵 ⊊ Q ↔ ( 𝐵 ⊆ Q ∧ ¬ Q ⊆ 𝐵 ) ) | |
| 81 | 79 80 | sylibr | ⊢ ( 𝐴 ∈ P → 𝐵 ⊊ Q ) |
| 82 | 35 81 | jca | ⊢ ( 𝐴 ∈ P → ( ∅ ⊊ 𝐵 ∧ 𝐵 ⊊ Q ) ) |
| 83 | ltsonq | ⊢ <Q Or Q | |
| 84 | 83 72 | sotri | ⊢ ( ( 𝑧 <Q 𝑥 ∧ 𝑥 <Q 𝑦 ) → 𝑧 <Q 𝑦 ) |
| 85 | 84 | ex | ⊢ ( 𝑧 <Q 𝑥 → ( 𝑥 <Q 𝑦 → 𝑧 <Q 𝑦 ) ) |
| 86 | 85 | anim1d | ⊢ ( 𝑧 <Q 𝑥 → ( ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) → ( 𝑧 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ) ) |
| 87 | 86 | eximdv | ⊢ ( 𝑧 <Q 𝑥 → ( ∃ 𝑦 ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) → ∃ 𝑦 ( 𝑧 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ) ) |
| 88 | 87 58 24 | 3imtr4g | ⊢ ( 𝑧 <Q 𝑥 → ( 𝑥 ∈ 𝐵 → 𝑧 ∈ 𝐵 ) ) |
| 89 | 88 | com12 | ⊢ ( 𝑥 ∈ 𝐵 → ( 𝑧 <Q 𝑥 → 𝑧 ∈ 𝐵 ) ) |
| 90 | 89 | alrimiv | ⊢ ( 𝑥 ∈ 𝐵 → ∀ 𝑧 ( 𝑧 <Q 𝑥 → 𝑧 ∈ 𝐵 ) ) |
| 91 | nfe1 | ⊢ Ⅎ 𝑦 ∃ 𝑦 ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) | |
| 92 | 91 | nfab | ⊢ Ⅎ 𝑦 { 𝑥 ∣ ∃ 𝑦 ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) } |
| 93 | 1 92 | nfcxfr | ⊢ Ⅎ 𝑦 𝐵 |
| 94 | nfv | ⊢ Ⅎ 𝑦 𝑥 <Q 𝑧 | |
| 95 | 93 94 | nfrexw | ⊢ Ⅎ 𝑦 ∃ 𝑧 ∈ 𝐵 𝑥 <Q 𝑧 |
| 96 | 19.8a | ⊢ ( ( 𝑧 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) → ∃ 𝑦 ( 𝑧 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ) | |
| 97 | 96 24 | sylibr | ⊢ ( ( 𝑧 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) → 𝑧 ∈ 𝐵 ) |
| 98 | 97 | adantll | ⊢ ( ( ( 𝑥 <Q 𝑧 ∧ 𝑧 <Q 𝑦 ) ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) → 𝑧 ∈ 𝐵 ) |
| 99 | simpll | ⊢ ( ( ( 𝑥 <Q 𝑧 ∧ 𝑧 <Q 𝑦 ) ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) → 𝑥 <Q 𝑧 ) | |
| 100 | 98 99 | jca | ⊢ ( ( ( 𝑥 <Q 𝑧 ∧ 𝑧 <Q 𝑦 ) ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) → ( 𝑧 ∈ 𝐵 ∧ 𝑥 <Q 𝑧 ) ) |
| 101 | 100 | expcom | ⊢ ( ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 → ( ( 𝑥 <Q 𝑧 ∧ 𝑧 <Q 𝑦 ) → ( 𝑧 ∈ 𝐵 ∧ 𝑥 <Q 𝑧 ) ) ) |
| 102 | 101 | eximdv | ⊢ ( ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 → ( ∃ 𝑧 ( 𝑥 <Q 𝑧 ∧ 𝑧 <Q 𝑦 ) → ∃ 𝑧 ( 𝑧 ∈ 𝐵 ∧ 𝑥 <Q 𝑧 ) ) ) |
| 103 | ltbtwnnq | ⊢ ( 𝑥 <Q 𝑦 ↔ ∃ 𝑧 ( 𝑥 <Q 𝑧 ∧ 𝑧 <Q 𝑦 ) ) | |
| 104 | df-rex | ⊢ ( ∃ 𝑧 ∈ 𝐵 𝑥 <Q 𝑧 ↔ ∃ 𝑧 ( 𝑧 ∈ 𝐵 ∧ 𝑥 <Q 𝑧 ) ) | |
| 105 | 102 103 104 | 3imtr4g | ⊢ ( ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 → ( 𝑥 <Q 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑥 <Q 𝑧 ) ) |
| 106 | 105 | impcom | ⊢ ( ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) → ∃ 𝑧 ∈ 𝐵 𝑥 <Q 𝑧 ) |
| 107 | 95 106 | exlimi | ⊢ ( ∃ 𝑦 ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) → ∃ 𝑧 ∈ 𝐵 𝑥 <Q 𝑧 ) |
| 108 | 58 107 | sylbi | ⊢ ( 𝑥 ∈ 𝐵 → ∃ 𝑧 ∈ 𝐵 𝑥 <Q 𝑧 ) |
| 109 | 90 108 | jca | ⊢ ( 𝑥 ∈ 𝐵 → ( ∀ 𝑧 ( 𝑧 <Q 𝑥 → 𝑧 ∈ 𝐵 ) ∧ ∃ 𝑧 ∈ 𝐵 𝑥 <Q 𝑧 ) ) |
| 110 | 109 | rgen | ⊢ ∀ 𝑥 ∈ 𝐵 ( ∀ 𝑧 ( 𝑧 <Q 𝑥 → 𝑧 ∈ 𝐵 ) ∧ ∃ 𝑧 ∈ 𝐵 𝑥 <Q 𝑧 ) |
| 111 | elnp | ⊢ ( 𝐵 ∈ P ↔ ( ( ∅ ⊊ 𝐵 ∧ 𝐵 ⊊ Q ) ∧ ∀ 𝑥 ∈ 𝐵 ( ∀ 𝑧 ( 𝑧 <Q 𝑥 → 𝑧 ∈ 𝐵 ) ∧ ∃ 𝑧 ∈ 𝐵 𝑥 <Q 𝑧 ) ) ) | |
| 112 | 82 110 111 | sylanblrc | ⊢ ( 𝐴 ∈ P → 𝐵 ∈ P ) |