This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There exists a number between any two positive fractions. Proposition 9-2.6(i) of Gleason p. 120. (Contributed by NM, 17-Mar-1996) (Revised by Mario Carneiro, 10-May-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltbtwnnq | ⊢ ( 𝐴 <Q 𝐵 ↔ ∃ 𝑥 ( 𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrelnq | ⊢ <Q ⊆ ( Q × Q ) | |
| 2 | 1 | brel | ⊢ ( 𝐴 <Q 𝐵 → ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ) ) |
| 3 | 2 | simprd | ⊢ ( 𝐴 <Q 𝐵 → 𝐵 ∈ Q ) |
| 4 | ltexnq | ⊢ ( 𝐵 ∈ Q → ( 𝐴 <Q 𝐵 ↔ ∃ 𝑦 ( 𝐴 +Q 𝑦 ) = 𝐵 ) ) | |
| 5 | eleq1 | ⊢ ( ( 𝐴 +Q 𝑦 ) = 𝐵 → ( ( 𝐴 +Q 𝑦 ) ∈ Q ↔ 𝐵 ∈ Q ) ) | |
| 6 | 5 | biimparc | ⊢ ( ( 𝐵 ∈ Q ∧ ( 𝐴 +Q 𝑦 ) = 𝐵 ) → ( 𝐴 +Q 𝑦 ) ∈ Q ) |
| 7 | addnqf | ⊢ +Q : ( Q × Q ) ⟶ Q | |
| 8 | 7 | fdmi | ⊢ dom +Q = ( Q × Q ) |
| 9 | 0nnq | ⊢ ¬ ∅ ∈ Q | |
| 10 | 8 9 | ndmovrcl | ⊢ ( ( 𝐴 +Q 𝑦 ) ∈ Q → ( 𝐴 ∈ Q ∧ 𝑦 ∈ Q ) ) |
| 11 | 6 10 | syl | ⊢ ( ( 𝐵 ∈ Q ∧ ( 𝐴 +Q 𝑦 ) = 𝐵 ) → ( 𝐴 ∈ Q ∧ 𝑦 ∈ Q ) ) |
| 12 | 11 | simprd | ⊢ ( ( 𝐵 ∈ Q ∧ ( 𝐴 +Q 𝑦 ) = 𝐵 ) → 𝑦 ∈ Q ) |
| 13 | nsmallnq | ⊢ ( 𝑦 ∈ Q → ∃ 𝑧 𝑧 <Q 𝑦 ) | |
| 14 | 11 | simpld | ⊢ ( ( 𝐵 ∈ Q ∧ ( 𝐴 +Q 𝑦 ) = 𝐵 ) → 𝐴 ∈ Q ) |
| 15 | 1 | brel | ⊢ ( 𝑧 <Q 𝑦 → ( 𝑧 ∈ Q ∧ 𝑦 ∈ Q ) ) |
| 16 | 15 | simpld | ⊢ ( 𝑧 <Q 𝑦 → 𝑧 ∈ Q ) |
| 17 | ltaddnq | ⊢ ( ( 𝐴 ∈ Q ∧ 𝑧 ∈ Q ) → 𝐴 <Q ( 𝐴 +Q 𝑧 ) ) | |
| 18 | 14 16 17 | syl2an | ⊢ ( ( ( 𝐵 ∈ Q ∧ ( 𝐴 +Q 𝑦 ) = 𝐵 ) ∧ 𝑧 <Q 𝑦 ) → 𝐴 <Q ( 𝐴 +Q 𝑧 ) ) |
| 19 | ltanq | ⊢ ( 𝐴 ∈ Q → ( 𝑧 <Q 𝑦 ↔ ( 𝐴 +Q 𝑧 ) <Q ( 𝐴 +Q 𝑦 ) ) ) | |
| 20 | 19 | biimpa | ⊢ ( ( 𝐴 ∈ Q ∧ 𝑧 <Q 𝑦 ) → ( 𝐴 +Q 𝑧 ) <Q ( 𝐴 +Q 𝑦 ) ) |
| 21 | 14 20 | sylan | ⊢ ( ( ( 𝐵 ∈ Q ∧ ( 𝐴 +Q 𝑦 ) = 𝐵 ) ∧ 𝑧 <Q 𝑦 ) → ( 𝐴 +Q 𝑧 ) <Q ( 𝐴 +Q 𝑦 ) ) |
| 22 | simplr | ⊢ ( ( ( 𝐵 ∈ Q ∧ ( 𝐴 +Q 𝑦 ) = 𝐵 ) ∧ 𝑧 <Q 𝑦 ) → ( 𝐴 +Q 𝑦 ) = 𝐵 ) | |
| 23 | 21 22 | breqtrd | ⊢ ( ( ( 𝐵 ∈ Q ∧ ( 𝐴 +Q 𝑦 ) = 𝐵 ) ∧ 𝑧 <Q 𝑦 ) → ( 𝐴 +Q 𝑧 ) <Q 𝐵 ) |
| 24 | ovex | ⊢ ( 𝐴 +Q 𝑧 ) ∈ V | |
| 25 | breq2 | ⊢ ( 𝑥 = ( 𝐴 +Q 𝑧 ) → ( 𝐴 <Q 𝑥 ↔ 𝐴 <Q ( 𝐴 +Q 𝑧 ) ) ) | |
| 26 | breq1 | ⊢ ( 𝑥 = ( 𝐴 +Q 𝑧 ) → ( 𝑥 <Q 𝐵 ↔ ( 𝐴 +Q 𝑧 ) <Q 𝐵 ) ) | |
| 27 | 25 26 | anbi12d | ⊢ ( 𝑥 = ( 𝐴 +Q 𝑧 ) → ( ( 𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵 ) ↔ ( 𝐴 <Q ( 𝐴 +Q 𝑧 ) ∧ ( 𝐴 +Q 𝑧 ) <Q 𝐵 ) ) ) |
| 28 | 24 27 | spcev | ⊢ ( ( 𝐴 <Q ( 𝐴 +Q 𝑧 ) ∧ ( 𝐴 +Q 𝑧 ) <Q 𝐵 ) → ∃ 𝑥 ( 𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵 ) ) |
| 29 | 18 23 28 | syl2anc | ⊢ ( ( ( 𝐵 ∈ Q ∧ ( 𝐴 +Q 𝑦 ) = 𝐵 ) ∧ 𝑧 <Q 𝑦 ) → ∃ 𝑥 ( 𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵 ) ) |
| 30 | 29 | ex | ⊢ ( ( 𝐵 ∈ Q ∧ ( 𝐴 +Q 𝑦 ) = 𝐵 ) → ( 𝑧 <Q 𝑦 → ∃ 𝑥 ( 𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵 ) ) ) |
| 31 | 30 | exlimdv | ⊢ ( ( 𝐵 ∈ Q ∧ ( 𝐴 +Q 𝑦 ) = 𝐵 ) → ( ∃ 𝑧 𝑧 <Q 𝑦 → ∃ 𝑥 ( 𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵 ) ) ) |
| 32 | 13 31 | syl5 | ⊢ ( ( 𝐵 ∈ Q ∧ ( 𝐴 +Q 𝑦 ) = 𝐵 ) → ( 𝑦 ∈ Q → ∃ 𝑥 ( 𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵 ) ) ) |
| 33 | 12 32 | mpd | ⊢ ( ( 𝐵 ∈ Q ∧ ( 𝐴 +Q 𝑦 ) = 𝐵 ) → ∃ 𝑥 ( 𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵 ) ) |
| 34 | 33 | ex | ⊢ ( 𝐵 ∈ Q → ( ( 𝐴 +Q 𝑦 ) = 𝐵 → ∃ 𝑥 ( 𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵 ) ) ) |
| 35 | 34 | exlimdv | ⊢ ( 𝐵 ∈ Q → ( ∃ 𝑦 ( 𝐴 +Q 𝑦 ) = 𝐵 → ∃ 𝑥 ( 𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵 ) ) ) |
| 36 | 4 35 | sylbid | ⊢ ( 𝐵 ∈ Q → ( 𝐴 <Q 𝐵 → ∃ 𝑥 ( 𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵 ) ) ) |
| 37 | 3 36 | mpcom | ⊢ ( 𝐴 <Q 𝐵 → ∃ 𝑥 ( 𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵 ) ) |
| 38 | ltsonq | ⊢ <Q Or Q | |
| 39 | 38 1 | sotri | ⊢ ( ( 𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵 ) → 𝐴 <Q 𝐵 ) |
| 40 | 39 | exlimiv | ⊢ ( ∃ 𝑥 ( 𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵 ) → 𝐴 <Q 𝐵 ) |
| 41 | 37 40 | impbii | ⊢ ( 𝐴 <Q 𝐵 ↔ ∃ 𝑥 ( 𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵 ) ) |