This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for Proposition 9-3.7 of Gleason p. 124. (Contributed by NM, 30-Apr-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | reclempr.1 | |- B = { x | E. y ( x |
|
| Assertion | reclem2pr | |- ( A e. P. -> B e. P. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reclempr.1 | |- B = { x | E. y ( x |
|
| 2 | prpssnq | |- ( A e. P. -> A C. Q. ) |
|
| 3 | pssnel | |- ( A C. Q. -> E. x ( x e. Q. /\ -. x e. A ) ) |
|
| 4 | recclnq | |- ( x e. Q. -> ( *Q ` x ) e. Q. ) |
|
| 5 | nsmallnq | |- ( ( *Q ` x ) e. Q. -> E. z z |
|
| 6 | 4 5 | syl | |- ( x e. Q. -> E. z z |
| 7 | 6 | adantr | |- ( ( x e. Q. /\ -. x e. A ) -> E. z z |
| 8 | recrecnq | |- ( x e. Q. -> ( *Q ` ( *Q ` x ) ) = x ) |
|
| 9 | 8 | eleq1d | |- ( x e. Q. -> ( ( *Q ` ( *Q ` x ) ) e. A <-> x e. A ) ) |
| 10 | 9 | notbid | |- ( x e. Q. -> ( -. ( *Q ` ( *Q ` x ) ) e. A <-> -. x e. A ) ) |
| 11 | 10 | anbi2d | |- ( x e. Q. -> ( ( z( z |
| 12 | fvex | |- ( *Q ` x ) e. _V |
|
| 13 | breq2 | |- ( y = ( *Q ` x ) -> ( zz |
|
| 14 | fveq2 | |- ( y = ( *Q ` x ) -> ( *Q ` y ) = ( *Q ` ( *Q ` x ) ) ) |
|
| 15 | 14 | eleq1d | |- ( y = ( *Q ` x ) -> ( ( *Q ` y ) e. A <-> ( *Q ` ( *Q ` x ) ) e. A ) ) |
| 16 | 15 | notbid | |- ( y = ( *Q ` x ) -> ( -. ( *Q ` y ) e. A <-> -. ( *Q ` ( *Q ` x ) ) e. A ) ) |
| 17 | 13 16 | anbi12d | |- ( y = ( *Q ` x ) -> ( ( z( z |
| 18 | 12 17 | spcev | |- ( ( zE. y ( z |
| 19 | 11 18 | biimtrrdi | |- ( x e. Q. -> ( ( zE. y ( z |
| 20 | vex | |- z e. _V |
|
| 21 | breq1 | |- ( x = z -> ( xz |
|
| 22 | 21 | anbi1d | |- ( x = z -> ( ( x( z |
| 23 | 22 | exbidv | |- ( x = z -> ( E. y ( xE. y ( z |
| 24 | 20 23 1 | elab2 | |- ( z e. B <-> E. y ( z |
| 25 | 19 24 | imbitrrdi | |- ( x e. Q. -> ( ( zz e. B ) ) |
| 26 | 25 | expcomd | |- ( x e. Q. -> ( -. x e. A -> ( zz e. B ) ) ) |
| 27 | 26 | imp | |- ( ( x e. Q. /\ -. x e. A ) -> ( zz e. B ) ) |
| 28 | 27 | eximdv | |- ( ( x e. Q. /\ -. x e. A ) -> ( E. z zE. z z e. B ) ) |
| 29 | 7 28 | mpd | |- ( ( x e. Q. /\ -. x e. A ) -> E. z z e. B ) |
| 30 | n0 | |- ( B =/= (/) <-> E. z z e. B ) |
|
| 31 | 29 30 | sylibr | |- ( ( x e. Q. /\ -. x e. A ) -> B =/= (/) ) |
| 32 | 31 | exlimiv | |- ( E. x ( x e. Q. /\ -. x e. A ) -> B =/= (/) ) |
| 33 | 2 3 32 | 3syl | |- ( A e. P. -> B =/= (/) ) |
| 34 | 0pss | |- ( (/) C. B <-> B =/= (/) ) |
|
| 35 | 33 34 | sylibr | |- ( A e. P. -> (/) C. B ) |
| 36 | prn0 | |- ( A e. P. -> A =/= (/) ) |
|
| 37 | elprnq | |- ( ( A e. P. /\ z e. A ) -> z e. Q. ) |
|
| 38 | recrecnq | |- ( z e. Q. -> ( *Q ` ( *Q ` z ) ) = z ) |
|
| 39 | 38 | eleq1d | |- ( z e. Q. -> ( ( *Q ` ( *Q ` z ) ) e. A <-> z e. A ) ) |
| 40 | 39 | anbi2d | |- ( z e. Q. -> ( ( A e. P. /\ ( *Q ` ( *Q ` z ) ) e. A ) <-> ( A e. P. /\ z e. A ) ) ) |
| 41 | 37 40 | syl | |- ( ( A e. P. /\ z e. A ) -> ( ( A e. P. /\ ( *Q ` ( *Q ` z ) ) e. A ) <-> ( A e. P. /\ z e. A ) ) ) |
| 42 | fvex | |- ( *Q ` z ) e. _V |
|
| 43 | fveq2 | |- ( x = ( *Q ` z ) -> ( *Q ` x ) = ( *Q ` ( *Q ` z ) ) ) |
|
| 44 | 43 | eleq1d | |- ( x = ( *Q ` z ) -> ( ( *Q ` x ) e. A <-> ( *Q ` ( *Q ` z ) ) e. A ) ) |
| 45 | 44 | anbi2d | |- ( x = ( *Q ` z ) -> ( ( A e. P. /\ ( *Q ` x ) e. A ) <-> ( A e. P. /\ ( *Q ` ( *Q ` z ) ) e. A ) ) ) |
| 46 | 42 45 | spcev | |- ( ( A e. P. /\ ( *Q ` ( *Q ` z ) ) e. A ) -> E. x ( A e. P. /\ ( *Q ` x ) e. A ) ) |
| 47 | 41 46 | biimtrrdi | |- ( ( A e. P. /\ z e. A ) -> ( ( A e. P. /\ z e. A ) -> E. x ( A e. P. /\ ( *Q ` x ) e. A ) ) ) |
| 48 | 47 | pm2.43i | |- ( ( A e. P. /\ z e. A ) -> E. x ( A e. P. /\ ( *Q ` x ) e. A ) ) |
| 49 | elprnq | |- ( ( A e. P. /\ ( *Q ` x ) e. A ) -> ( *Q ` x ) e. Q. ) |
|
| 50 | dmrecnq | |- dom *Q = Q. |
|
| 51 | 0nnq | |- -. (/) e. Q. |
|
| 52 | 50 51 | ndmfvrcl | |- ( ( *Q ` x ) e. Q. -> x e. Q. ) |
| 53 | 49 52 | syl | |- ( ( A e. P. /\ ( *Q ` x ) e. A ) -> x e. Q. ) |
| 54 | ltrnq | |- ( x( *Q ` y ) |
|
| 55 | prcdnq | |- ( ( A e. P. /\ ( *Q ` x ) e. A ) -> ( ( *Q ` y )( *Q ` y ) e. A ) ) |
|
| 56 | 54 55 | biimtrid | |- ( ( A e. P. /\ ( *Q ` x ) e. A ) -> ( x( *Q ` y ) e. A ) ) |
| 57 | 56 | alrimiv | |- ( ( A e. P. /\ ( *Q ` x ) e. A ) -> A. y ( x( *Q ` y ) e. A ) ) |
| 58 | 1 | eqabri | |- ( x e. B <-> E. y ( x |
| 59 | exanali | |- ( E. y ( x-. A. y ( x( *Q ` y ) e. A ) ) |
|
| 60 | 58 59 | bitri | |- ( x e. B <-> -. A. y ( x( *Q ` y ) e. A ) ) |
| 61 | 60 | con2bii | |- ( A. y ( x( *Q ` y ) e. A ) <-> -. x e. B ) |
| 62 | 57 61 | sylib | |- ( ( A e. P. /\ ( *Q ` x ) e. A ) -> -. x e. B ) |
| 63 | 53 62 | jca | |- ( ( A e. P. /\ ( *Q ` x ) e. A ) -> ( x e. Q. /\ -. x e. B ) ) |
| 64 | 63 | eximi | |- ( E. x ( A e. P. /\ ( *Q ` x ) e. A ) -> E. x ( x e. Q. /\ -. x e. B ) ) |
| 65 | 48 64 | syl | |- ( ( A e. P. /\ z e. A ) -> E. x ( x e. Q. /\ -. x e. B ) ) |
| 66 | 65 | ex | |- ( A e. P. -> ( z e. A -> E. x ( x e. Q. /\ -. x e. B ) ) ) |
| 67 | 66 | exlimdv | |- ( A e. P. -> ( E. z z e. A -> E. x ( x e. Q. /\ -. x e. B ) ) ) |
| 68 | n0 | |- ( A =/= (/) <-> E. z z e. A ) |
|
| 69 | nss | |- ( -. Q. C_ B <-> E. x ( x e. Q. /\ -. x e. B ) ) |
|
| 70 | 67 68 69 | 3imtr4g | |- ( A e. P. -> ( A =/= (/) -> -. Q. C_ B ) ) |
| 71 | 36 70 | mpd | |- ( A e. P. -> -. Q. C_ B ) |
| 72 | ltrelnq | |- |
|
| 73 | 72 | brel | |- ( x( x e. Q. /\ y e. Q. ) ) |
| 74 | 73 | simpld | |- ( xx e. Q. ) |
| 75 | 74 | adantr | |- ( ( xx e. Q. ) |
| 76 | 75 | exlimiv | |- ( E. y ( xx e. Q. ) |
| 77 | 58 76 | sylbi | |- ( x e. B -> x e. Q. ) |
| 78 | 77 | ssriv | |- B C_ Q. |
| 79 | 71 78 | jctil | |- ( A e. P. -> ( B C_ Q. /\ -. Q. C_ B ) ) |
| 80 | dfpss3 | |- ( B C. Q. <-> ( B C_ Q. /\ -. Q. C_ B ) ) |
|
| 81 | 79 80 | sylibr | |- ( A e. P. -> B C. Q. ) |
| 82 | 35 81 | jca | |- ( A e. P. -> ( (/) C. B /\ B C. Q. ) ) |
| 83 | ltsonq | |- |
|
| 84 | 83 72 | sotri | |- ( ( zz |
| 85 | 84 | ex | |- ( z( xz |
| 86 | 85 | anim1d | |- ( z( ( x( z |
| 87 | 86 | eximdv | |- ( z( E. y ( xE. y ( z |
| 88 | 87 58 24 | 3imtr4g | |- ( z( x e. B -> z e. B ) ) |
| 89 | 88 | com12 | |- ( x e. B -> ( zz e. B ) ) |
| 90 | 89 | alrimiv | |- ( x e. B -> A. z ( zz e. B ) ) |
| 91 | nfe1 | |- F/ y E. y ( x |
|
| 92 | 91 | nfab | |- F/_ y { x | E. y ( x |
| 93 | 1 92 | nfcxfr | |- F/_ y B |
| 94 | nfv | |- F/ y x |
|
| 95 | 93 94 | nfrexw | |- F/ y E. z e. B x |
| 96 | 19.8a | |- ( ( zE. y ( z |
|
| 97 | 96 24 | sylibr | |- ( ( zz e. B ) |
| 98 | 97 | adantll | |- ( ( ( xz e. B ) |
| 99 | simpll | |- ( ( ( xx |
|
| 100 | 98 99 | jca | |- ( ( ( x( z e. B /\ x |
| 101 | 100 | expcom | |- ( -. ( *Q ` y ) e. A -> ( ( x( z e. B /\ x |
| 102 | 101 | eximdv | |- ( -. ( *Q ` y ) e. A -> ( E. z ( xE. z ( z e. B /\ x |
| 103 | ltbtwnnq | |- ( xE. z ( x |
|
| 104 | df-rex | |- ( E. z e. B xE. z ( z e. B /\ x |
|
| 105 | 102 103 104 | 3imtr4g | |- ( -. ( *Q ` y ) e. A -> ( xE. z e. B x |
| 106 | 105 | impcom | |- ( ( xE. z e. B x |
| 107 | 95 106 | exlimi | |- ( E. y ( xE. z e. B x |
| 108 | 58 107 | sylbi | |- ( x e. B -> E. z e. B x |
| 109 | 90 108 | jca | |- ( x e. B -> ( A. z ( zz e. B ) /\ E. z e. B x |
| 110 | 109 | rgen | |- A. x e. B ( A. z ( zz e. B ) /\ E. z e. B x |
| 111 | elnp | |- ( B e. P. <-> ( ( (/) C. B /\ B C. Q. ) /\ A. x e. B ( A. z ( zz e. B ) /\ E. z e. B x |
|
| 112 | 82 110 111 | sylanblrc | |- ( A e. P. -> B e. P. ) |