This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Domain of reciprocal on positive fractions. (Contributed by NM, 6-Mar-1996) (Revised by Mario Carneiro, 10-Jul-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmrecnq | ⊢ dom *Q = Q |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rq | ⊢ *Q = ( ◡ ·Q “ { 1Q } ) | |
| 2 | cnvimass | ⊢ ( ◡ ·Q “ { 1Q } ) ⊆ dom ·Q | |
| 3 | 1 2 | eqsstri | ⊢ *Q ⊆ dom ·Q |
| 4 | mulnqf | ⊢ ·Q : ( Q × Q ) ⟶ Q | |
| 5 | 4 | fdmi | ⊢ dom ·Q = ( Q × Q ) |
| 6 | 3 5 | sseqtri | ⊢ *Q ⊆ ( Q × Q ) |
| 7 | dmss | ⊢ ( *Q ⊆ ( Q × Q ) → dom *Q ⊆ dom ( Q × Q ) ) | |
| 8 | 6 7 | ax-mp | ⊢ dom *Q ⊆ dom ( Q × Q ) |
| 9 | dmxpid | ⊢ dom ( Q × Q ) = Q | |
| 10 | 8 9 | sseqtri | ⊢ dom *Q ⊆ Q |
| 11 | recclnq | ⊢ ( 𝑥 ∈ Q → ( *Q ‘ 𝑥 ) ∈ Q ) | |
| 12 | opelxpi | ⊢ ( ( 𝑥 ∈ Q ∧ ( *Q ‘ 𝑥 ) ∈ Q ) → 〈 𝑥 , ( *Q ‘ 𝑥 ) 〉 ∈ ( Q × Q ) ) | |
| 13 | 11 12 | mpdan | ⊢ ( 𝑥 ∈ Q → 〈 𝑥 , ( *Q ‘ 𝑥 ) 〉 ∈ ( Q × Q ) ) |
| 14 | df-ov | ⊢ ( 𝑥 ·Q ( *Q ‘ 𝑥 ) ) = ( ·Q ‘ 〈 𝑥 , ( *Q ‘ 𝑥 ) 〉 ) | |
| 15 | recidnq | ⊢ ( 𝑥 ∈ Q → ( 𝑥 ·Q ( *Q ‘ 𝑥 ) ) = 1Q ) | |
| 16 | 14 15 | eqtr3id | ⊢ ( 𝑥 ∈ Q → ( ·Q ‘ 〈 𝑥 , ( *Q ‘ 𝑥 ) 〉 ) = 1Q ) |
| 17 | ffn | ⊢ ( ·Q : ( Q × Q ) ⟶ Q → ·Q Fn ( Q × Q ) ) | |
| 18 | fniniseg | ⊢ ( ·Q Fn ( Q × Q ) → ( 〈 𝑥 , ( *Q ‘ 𝑥 ) 〉 ∈ ( ◡ ·Q “ { 1Q } ) ↔ ( 〈 𝑥 , ( *Q ‘ 𝑥 ) 〉 ∈ ( Q × Q ) ∧ ( ·Q ‘ 〈 𝑥 , ( *Q ‘ 𝑥 ) 〉 ) = 1Q ) ) ) | |
| 19 | 4 17 18 | mp2b | ⊢ ( 〈 𝑥 , ( *Q ‘ 𝑥 ) 〉 ∈ ( ◡ ·Q “ { 1Q } ) ↔ ( 〈 𝑥 , ( *Q ‘ 𝑥 ) 〉 ∈ ( Q × Q ) ∧ ( ·Q ‘ 〈 𝑥 , ( *Q ‘ 𝑥 ) 〉 ) = 1Q ) ) |
| 20 | 13 16 19 | sylanbrc | ⊢ ( 𝑥 ∈ Q → 〈 𝑥 , ( *Q ‘ 𝑥 ) 〉 ∈ ( ◡ ·Q “ { 1Q } ) ) |
| 21 | 20 1 | eleqtrrdi | ⊢ ( 𝑥 ∈ Q → 〈 𝑥 , ( *Q ‘ 𝑥 ) 〉 ∈ *Q ) |
| 22 | df-br | ⊢ ( 𝑥 *Q ( *Q ‘ 𝑥 ) ↔ 〈 𝑥 , ( *Q ‘ 𝑥 ) 〉 ∈ *Q ) | |
| 23 | 21 22 | sylibr | ⊢ ( 𝑥 ∈ Q → 𝑥 *Q ( *Q ‘ 𝑥 ) ) |
| 24 | vex | ⊢ 𝑥 ∈ V | |
| 25 | fvex | ⊢ ( *Q ‘ 𝑥 ) ∈ V | |
| 26 | 24 25 | breldm | ⊢ ( 𝑥 *Q ( *Q ‘ 𝑥 ) → 𝑥 ∈ dom *Q ) |
| 27 | 23 26 | syl | ⊢ ( 𝑥 ∈ Q → 𝑥 ∈ dom *Q ) |
| 28 | 27 | ssriv | ⊢ Q ⊆ dom *Q |
| 29 | 10 28 | eqssi | ⊢ dom *Q = Q |