This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The is no smallest positive fraction. (Contributed by NM, 26-Apr-1996) (Revised by Mario Carneiro, 10-May-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nsmallnq | ⊢ ( 𝐴 ∈ Q → ∃ 𝑥 𝑥 <Q 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | halfnq | ⊢ ( 𝐴 ∈ Q → ∃ 𝑥 ( 𝑥 +Q 𝑥 ) = 𝐴 ) | |
| 2 | eleq1a | ⊢ ( 𝐴 ∈ Q → ( ( 𝑥 +Q 𝑥 ) = 𝐴 → ( 𝑥 +Q 𝑥 ) ∈ Q ) ) | |
| 3 | addnqf | ⊢ +Q : ( Q × Q ) ⟶ Q | |
| 4 | 3 | fdmi | ⊢ dom +Q = ( Q × Q ) |
| 5 | 0nnq | ⊢ ¬ ∅ ∈ Q | |
| 6 | 4 5 | ndmovrcl | ⊢ ( ( 𝑥 +Q 𝑥 ) ∈ Q → ( 𝑥 ∈ Q ∧ 𝑥 ∈ Q ) ) |
| 7 | ltaddnq | ⊢ ( ( 𝑥 ∈ Q ∧ 𝑥 ∈ Q ) → 𝑥 <Q ( 𝑥 +Q 𝑥 ) ) | |
| 8 | 6 7 | syl | ⊢ ( ( 𝑥 +Q 𝑥 ) ∈ Q → 𝑥 <Q ( 𝑥 +Q 𝑥 ) ) |
| 9 | 2 8 | syl6 | ⊢ ( 𝐴 ∈ Q → ( ( 𝑥 +Q 𝑥 ) = 𝐴 → 𝑥 <Q ( 𝑥 +Q 𝑥 ) ) ) |
| 10 | breq2 | ⊢ ( ( 𝑥 +Q 𝑥 ) = 𝐴 → ( 𝑥 <Q ( 𝑥 +Q 𝑥 ) ↔ 𝑥 <Q 𝐴 ) ) | |
| 11 | 9 10 | mpbidi | ⊢ ( 𝐴 ∈ Q → ( ( 𝑥 +Q 𝑥 ) = 𝐴 → 𝑥 <Q 𝐴 ) ) |
| 12 | 11 | eximdv | ⊢ ( 𝐴 ∈ Q → ( ∃ 𝑥 ( 𝑥 +Q 𝑥 ) = 𝐴 → ∃ 𝑥 𝑥 <Q 𝐴 ) ) |
| 13 | 1 12 | mpd | ⊢ ( 𝐴 ∈ Q → ∃ 𝑥 𝑥 <Q 𝐴 ) |