This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for Proposition 9-3.7(v) of Gleason p. 124. (Contributed by NM, 30-Apr-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | reclempr.1 | ⊢ 𝐵 = { 𝑥 ∣ ∃ 𝑦 ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) } | |
| Assertion | reclem3pr | ⊢ ( 𝐴 ∈ P → 1P ⊆ ( 𝐴 ·P 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reclempr.1 | ⊢ 𝐵 = { 𝑥 ∣ ∃ 𝑦 ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) } | |
| 2 | df-1p | ⊢ 1P = { 𝑤 ∣ 𝑤 <Q 1Q } | |
| 3 | 2 | eqabri | ⊢ ( 𝑤 ∈ 1P ↔ 𝑤 <Q 1Q ) |
| 4 | ltrnq | ⊢ ( 𝑤 <Q 1Q ↔ ( *Q ‘ 1Q ) <Q ( *Q ‘ 𝑤 ) ) | |
| 5 | mulcomnq | ⊢ ( ( *Q ‘ 1Q ) ·Q 1Q ) = ( 1Q ·Q ( *Q ‘ 1Q ) ) | |
| 6 | 1nq | ⊢ 1Q ∈ Q | |
| 7 | recclnq | ⊢ ( 1Q ∈ Q → ( *Q ‘ 1Q ) ∈ Q ) | |
| 8 | mulidnq | ⊢ ( ( *Q ‘ 1Q ) ∈ Q → ( ( *Q ‘ 1Q ) ·Q 1Q ) = ( *Q ‘ 1Q ) ) | |
| 9 | 6 7 8 | mp2b | ⊢ ( ( *Q ‘ 1Q ) ·Q 1Q ) = ( *Q ‘ 1Q ) |
| 10 | recidnq | ⊢ ( 1Q ∈ Q → ( 1Q ·Q ( *Q ‘ 1Q ) ) = 1Q ) | |
| 11 | 6 10 | ax-mp | ⊢ ( 1Q ·Q ( *Q ‘ 1Q ) ) = 1Q |
| 12 | 5 9 11 | 3eqtr3i | ⊢ ( *Q ‘ 1Q ) = 1Q |
| 13 | 12 | breq1i | ⊢ ( ( *Q ‘ 1Q ) <Q ( *Q ‘ 𝑤 ) ↔ 1Q <Q ( *Q ‘ 𝑤 ) ) |
| 14 | 4 13 | bitri | ⊢ ( 𝑤 <Q 1Q ↔ 1Q <Q ( *Q ‘ 𝑤 ) ) |
| 15 | prlem936 | ⊢ ( ( 𝐴 ∈ P ∧ 1Q <Q ( *Q ‘ 𝑤 ) ) → ∃ 𝑣 ∈ 𝐴 ¬ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 ) | |
| 16 | 14 15 | sylan2b | ⊢ ( ( 𝐴 ∈ P ∧ 𝑤 <Q 1Q ) → ∃ 𝑣 ∈ 𝐴 ¬ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 ) |
| 17 | prnmax | ⊢ ( ( 𝐴 ∈ P ∧ 𝑣 ∈ 𝐴 ) → ∃ 𝑧 ∈ 𝐴 𝑣 <Q 𝑧 ) | |
| 18 | 17 | ad2ant2r | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑤 <Q 1Q ) ∧ ( 𝑣 ∈ 𝐴 ∧ ¬ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 ) ) → ∃ 𝑧 ∈ 𝐴 𝑣 <Q 𝑧 ) |
| 19 | elprnq | ⊢ ( ( 𝐴 ∈ P ∧ 𝑣 ∈ 𝐴 ) → 𝑣 ∈ Q ) | |
| 20 | 19 | ad2ant2r | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑤 <Q 1Q ) ∧ ( 𝑣 ∈ 𝐴 ∧ ¬ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 ) ) → 𝑣 ∈ Q ) |
| 21 | 20 | 3adant3 | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑤 <Q 1Q ) ∧ ( 𝑣 ∈ 𝐴 ∧ ¬ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 ) ∧ 𝑣 <Q 𝑧 ) → 𝑣 ∈ Q ) |
| 22 | simp1r | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑤 <Q 1Q ) ∧ ( 𝑣 ∈ 𝐴 ∧ ¬ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 ) ∧ 𝑣 <Q 𝑧 ) → 𝑤 <Q 1Q ) | |
| 23 | ltrelnq | ⊢ <Q ⊆ ( Q × Q ) | |
| 24 | 23 | brel | ⊢ ( 𝑤 <Q 1Q → ( 𝑤 ∈ Q ∧ 1Q ∈ Q ) ) |
| 25 | 24 | simpld | ⊢ ( 𝑤 <Q 1Q → 𝑤 ∈ Q ) |
| 26 | 22 25 | syl | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑤 <Q 1Q ) ∧ ( 𝑣 ∈ 𝐴 ∧ ¬ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 ) ∧ 𝑣 <Q 𝑧 ) → 𝑤 ∈ Q ) |
| 27 | simp3 | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑤 <Q 1Q ) ∧ ( 𝑣 ∈ 𝐴 ∧ ¬ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 ) ∧ 𝑣 <Q 𝑧 ) → 𝑣 <Q 𝑧 ) | |
| 28 | simp2r | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑤 <Q 1Q ) ∧ ( 𝑣 ∈ 𝐴 ∧ ¬ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 ) ∧ 𝑣 <Q 𝑧 ) → ¬ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 ) | |
| 29 | ltrnq | ⊢ ( 𝑣 <Q 𝑧 ↔ ( *Q ‘ 𝑧 ) <Q ( *Q ‘ 𝑣 ) ) | |
| 30 | fvex | ⊢ ( *Q ‘ 𝑧 ) ∈ V | |
| 31 | fvex | ⊢ ( *Q ‘ 𝑣 ) ∈ V | |
| 32 | ltmnq | ⊢ ( 𝑢 ∈ Q → ( 𝑥 <Q 𝑦 ↔ ( 𝑢 ·Q 𝑥 ) <Q ( 𝑢 ·Q 𝑦 ) ) ) | |
| 33 | vex | ⊢ 𝑤 ∈ V | |
| 34 | mulcomnq | ⊢ ( 𝑥 ·Q 𝑦 ) = ( 𝑦 ·Q 𝑥 ) | |
| 35 | 30 31 32 33 34 | caovord2 | ⊢ ( 𝑤 ∈ Q → ( ( *Q ‘ 𝑧 ) <Q ( *Q ‘ 𝑣 ) ↔ ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) <Q ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ) ) |
| 36 | 29 35 | bitrid | ⊢ ( 𝑤 ∈ Q → ( 𝑣 <Q 𝑧 ↔ ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) <Q ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ) ) |
| 37 | 36 | adantl | ⊢ ( ( 𝑣 ∈ Q ∧ 𝑤 ∈ Q ) → ( 𝑣 <Q 𝑧 ↔ ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) <Q ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ) ) |
| 38 | 37 | biimpd | ⊢ ( ( 𝑣 ∈ Q ∧ 𝑤 ∈ Q ) → ( 𝑣 <Q 𝑧 → ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) <Q ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ) ) |
| 39 | mulcomnq | ⊢ ( 𝑣 ·Q ( *Q ‘ 𝑣 ) ) = ( ( *Q ‘ 𝑣 ) ·Q 𝑣 ) | |
| 40 | recidnq | ⊢ ( 𝑣 ∈ Q → ( 𝑣 ·Q ( *Q ‘ 𝑣 ) ) = 1Q ) | |
| 41 | 39 40 | eqtr3id | ⊢ ( 𝑣 ∈ Q → ( ( *Q ‘ 𝑣 ) ·Q 𝑣 ) = 1Q ) |
| 42 | recidnq | ⊢ ( 𝑤 ∈ Q → ( 𝑤 ·Q ( *Q ‘ 𝑤 ) ) = 1Q ) | |
| 43 | 41 42 | oveqan12d | ⊢ ( ( 𝑣 ∈ Q ∧ 𝑤 ∈ Q ) → ( ( ( *Q ‘ 𝑣 ) ·Q 𝑣 ) ·Q ( 𝑤 ·Q ( *Q ‘ 𝑤 ) ) ) = ( 1Q ·Q 1Q ) ) |
| 44 | vex | ⊢ 𝑣 ∈ V | |
| 45 | mulassnq | ⊢ ( ( 𝑥 ·Q 𝑦 ) ·Q 𝑢 ) = ( 𝑥 ·Q ( 𝑦 ·Q 𝑢 ) ) | |
| 46 | fvex | ⊢ ( *Q ‘ 𝑤 ) ∈ V | |
| 47 | 31 44 33 34 45 46 | caov4 | ⊢ ( ( ( *Q ‘ 𝑣 ) ·Q 𝑣 ) ·Q ( 𝑤 ·Q ( *Q ‘ 𝑤 ) ) ) = ( ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ·Q ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ) |
| 48 | mulidnq | ⊢ ( 1Q ∈ Q → ( 1Q ·Q 1Q ) = 1Q ) | |
| 49 | 6 48 | ax-mp | ⊢ ( 1Q ·Q 1Q ) = 1Q |
| 50 | 43 47 49 | 3eqtr3g | ⊢ ( ( 𝑣 ∈ Q ∧ 𝑤 ∈ Q ) → ( ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ·Q ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ) = 1Q ) |
| 51 | recclnq | ⊢ ( 𝑣 ∈ Q → ( *Q ‘ 𝑣 ) ∈ Q ) | |
| 52 | mulclnq | ⊢ ( ( ( *Q ‘ 𝑣 ) ∈ Q ∧ 𝑤 ∈ Q ) → ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ∈ Q ) | |
| 53 | 51 52 | sylan | ⊢ ( ( 𝑣 ∈ Q ∧ 𝑤 ∈ Q ) → ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ∈ Q ) |
| 54 | recmulnq | ⊢ ( ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ∈ Q → ( ( *Q ‘ ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ) = ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ↔ ( ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ·Q ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ) = 1Q ) ) | |
| 55 | 53 54 | syl | ⊢ ( ( 𝑣 ∈ Q ∧ 𝑤 ∈ Q ) → ( ( *Q ‘ ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ) = ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ↔ ( ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ·Q ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ) = 1Q ) ) |
| 56 | 50 55 | mpbird | ⊢ ( ( 𝑣 ∈ Q ∧ 𝑤 ∈ Q ) → ( *Q ‘ ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ) = ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ) |
| 57 | 56 | eleq1d | ⊢ ( ( 𝑣 ∈ Q ∧ 𝑤 ∈ Q ) → ( ( *Q ‘ ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ) ∈ 𝐴 ↔ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 ) ) |
| 58 | 57 | notbid | ⊢ ( ( 𝑣 ∈ Q ∧ 𝑤 ∈ Q ) → ( ¬ ( *Q ‘ ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ) ∈ 𝐴 ↔ ¬ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 ) ) |
| 59 | 58 | biimprd | ⊢ ( ( 𝑣 ∈ Q ∧ 𝑤 ∈ Q ) → ( ¬ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 → ¬ ( *Q ‘ ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ) ∈ 𝐴 ) ) |
| 60 | 38 59 | anim12d | ⊢ ( ( 𝑣 ∈ Q ∧ 𝑤 ∈ Q ) → ( ( 𝑣 <Q 𝑧 ∧ ¬ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 ) → ( ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) <Q ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ∧ ¬ ( *Q ‘ ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ) ∈ 𝐴 ) ) ) |
| 61 | ovex | ⊢ ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ∈ V | |
| 62 | breq2 | ⊢ ( 𝑦 = ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) → ( ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) <Q 𝑦 ↔ ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) <Q ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ) ) | |
| 63 | fveq2 | ⊢ ( 𝑦 = ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) → ( *Q ‘ 𝑦 ) = ( *Q ‘ ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ) ) | |
| 64 | 63 | eleq1d | ⊢ ( 𝑦 = ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) → ( ( *Q ‘ 𝑦 ) ∈ 𝐴 ↔ ( *Q ‘ ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ) ∈ 𝐴 ) ) |
| 65 | 64 | notbid | ⊢ ( 𝑦 = ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) → ( ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ↔ ¬ ( *Q ‘ ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ) ∈ 𝐴 ) ) |
| 66 | 62 65 | anbi12d | ⊢ ( 𝑦 = ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) → ( ( ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ↔ ( ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) <Q ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ∧ ¬ ( *Q ‘ ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ) ∈ 𝐴 ) ) ) |
| 67 | 61 66 | spcev | ⊢ ( ( ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) <Q ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ∧ ¬ ( *Q ‘ ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ) ∈ 𝐴 ) → ∃ 𝑦 ( ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ) |
| 68 | ovex | ⊢ ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) ∈ V | |
| 69 | breq1 | ⊢ ( 𝑥 = ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) → ( 𝑥 <Q 𝑦 ↔ ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) <Q 𝑦 ) ) | |
| 70 | 69 | anbi1d | ⊢ ( 𝑥 = ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) → ( ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ↔ ( ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ) ) |
| 71 | 70 | exbidv | ⊢ ( 𝑥 = ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) → ( ∃ 𝑦 ( 𝑥 <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ↔ ∃ 𝑦 ( ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ) ) |
| 72 | 68 71 1 | elab2 | ⊢ ( ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) ∈ 𝐵 ↔ ∃ 𝑦 ( ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) <Q 𝑦 ∧ ¬ ( *Q ‘ 𝑦 ) ∈ 𝐴 ) ) |
| 73 | 67 72 | sylibr | ⊢ ( ( ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) <Q ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ∧ ¬ ( *Q ‘ ( ( *Q ‘ 𝑣 ) ·Q 𝑤 ) ) ∈ 𝐴 ) → ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) ∈ 𝐵 ) |
| 74 | 60 73 | syl6 | ⊢ ( ( 𝑣 ∈ Q ∧ 𝑤 ∈ Q ) → ( ( 𝑣 <Q 𝑧 ∧ ¬ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 ) → ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) ∈ 𝐵 ) ) |
| 75 | 74 | imp | ⊢ ( ( ( 𝑣 ∈ Q ∧ 𝑤 ∈ Q ) ∧ ( 𝑣 <Q 𝑧 ∧ ¬ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 ) ) → ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) ∈ 𝐵 ) |
| 76 | 21 26 27 28 75 | syl22anc | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑤 <Q 1Q ) ∧ ( 𝑣 ∈ 𝐴 ∧ ¬ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 ) ∧ 𝑣 <Q 𝑧 ) → ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) ∈ 𝐵 ) |
| 77 | 23 | brel | ⊢ ( 𝑣 <Q 𝑧 → ( 𝑣 ∈ Q ∧ 𝑧 ∈ Q ) ) |
| 78 | 77 | simprd | ⊢ ( 𝑣 <Q 𝑧 → 𝑧 ∈ Q ) |
| 79 | 78 | 3ad2ant3 | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑤 <Q 1Q ) ∧ ( 𝑣 ∈ 𝐴 ∧ ¬ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 ) ∧ 𝑣 <Q 𝑧 ) → 𝑧 ∈ Q ) |
| 80 | mulidnq | ⊢ ( 𝑤 ∈ Q → ( 𝑤 ·Q 1Q ) = 𝑤 ) | |
| 81 | mulcomnq | ⊢ ( 𝑤 ·Q 1Q ) = ( 1Q ·Q 𝑤 ) | |
| 82 | 80 81 | eqtr3di | ⊢ ( 𝑤 ∈ Q → 𝑤 = ( 1Q ·Q 𝑤 ) ) |
| 83 | recidnq | ⊢ ( 𝑧 ∈ Q → ( 𝑧 ·Q ( *Q ‘ 𝑧 ) ) = 1Q ) | |
| 84 | 83 | oveq1d | ⊢ ( 𝑧 ∈ Q → ( ( 𝑧 ·Q ( *Q ‘ 𝑧 ) ) ·Q 𝑤 ) = ( 1Q ·Q 𝑤 ) ) |
| 85 | mulassnq | ⊢ ( ( 𝑧 ·Q ( *Q ‘ 𝑧 ) ) ·Q 𝑤 ) = ( 𝑧 ·Q ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) ) | |
| 86 | 84 85 | eqtr3di | ⊢ ( 𝑧 ∈ Q → ( 1Q ·Q 𝑤 ) = ( 𝑧 ·Q ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) ) ) |
| 87 | 82 86 | sylan9eqr | ⊢ ( ( 𝑧 ∈ Q ∧ 𝑤 ∈ Q ) → 𝑤 = ( 𝑧 ·Q ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) ) ) |
| 88 | 79 26 87 | syl2anc | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑤 <Q 1Q ) ∧ ( 𝑣 ∈ 𝐴 ∧ ¬ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 ) ∧ 𝑣 <Q 𝑧 ) → 𝑤 = ( 𝑧 ·Q ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) ) ) |
| 89 | oveq2 | ⊢ ( 𝑥 = ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) → ( 𝑧 ·Q 𝑥 ) = ( 𝑧 ·Q ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) ) ) | |
| 90 | 89 | rspceeqv | ⊢ ( ( ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) ∈ 𝐵 ∧ 𝑤 = ( 𝑧 ·Q ( ( *Q ‘ 𝑧 ) ·Q 𝑤 ) ) ) → ∃ 𝑥 ∈ 𝐵 𝑤 = ( 𝑧 ·Q 𝑥 ) ) |
| 91 | 76 88 90 | syl2anc | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑤 <Q 1Q ) ∧ ( 𝑣 ∈ 𝐴 ∧ ¬ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 ) ∧ 𝑣 <Q 𝑧 ) → ∃ 𝑥 ∈ 𝐵 𝑤 = ( 𝑧 ·Q 𝑥 ) ) |
| 92 | 91 | 3expia | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑤 <Q 1Q ) ∧ ( 𝑣 ∈ 𝐴 ∧ ¬ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 ) ) → ( 𝑣 <Q 𝑧 → ∃ 𝑥 ∈ 𝐵 𝑤 = ( 𝑧 ·Q 𝑥 ) ) ) |
| 93 | 92 | reximdv | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑤 <Q 1Q ) ∧ ( 𝑣 ∈ 𝐴 ∧ ¬ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 ) ) → ( ∃ 𝑧 ∈ 𝐴 𝑣 <Q 𝑧 → ∃ 𝑧 ∈ 𝐴 ∃ 𝑥 ∈ 𝐵 𝑤 = ( 𝑧 ·Q 𝑥 ) ) ) |
| 94 | 1 | reclem2pr | ⊢ ( 𝐴 ∈ P → 𝐵 ∈ P ) |
| 95 | df-mp | ⊢ ·P = ( 𝑦 ∈ P , 𝑤 ∈ P ↦ { 𝑢 ∣ ∃ 𝑓 ∈ 𝑦 ∃ 𝑔 ∈ 𝑤 𝑢 = ( 𝑓 ·Q 𝑔 ) } ) | |
| 96 | mulclnq | ⊢ ( ( 𝑓 ∈ Q ∧ 𝑔 ∈ Q ) → ( 𝑓 ·Q 𝑔 ) ∈ Q ) | |
| 97 | 95 96 | genpelv | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑤 ∈ ( 𝐴 ·P 𝐵 ) ↔ ∃ 𝑧 ∈ 𝐴 ∃ 𝑥 ∈ 𝐵 𝑤 = ( 𝑧 ·Q 𝑥 ) ) ) |
| 98 | 94 97 | mpdan | ⊢ ( 𝐴 ∈ P → ( 𝑤 ∈ ( 𝐴 ·P 𝐵 ) ↔ ∃ 𝑧 ∈ 𝐴 ∃ 𝑥 ∈ 𝐵 𝑤 = ( 𝑧 ·Q 𝑥 ) ) ) |
| 99 | 98 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑤 <Q 1Q ) ∧ ( 𝑣 ∈ 𝐴 ∧ ¬ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 ) ) → ( 𝑤 ∈ ( 𝐴 ·P 𝐵 ) ↔ ∃ 𝑧 ∈ 𝐴 ∃ 𝑥 ∈ 𝐵 𝑤 = ( 𝑧 ·Q 𝑥 ) ) ) |
| 100 | 93 99 | sylibrd | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑤 <Q 1Q ) ∧ ( 𝑣 ∈ 𝐴 ∧ ¬ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 ) ) → ( ∃ 𝑧 ∈ 𝐴 𝑣 <Q 𝑧 → 𝑤 ∈ ( 𝐴 ·P 𝐵 ) ) ) |
| 101 | 18 100 | mpd | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑤 <Q 1Q ) ∧ ( 𝑣 ∈ 𝐴 ∧ ¬ ( 𝑣 ·Q ( *Q ‘ 𝑤 ) ) ∈ 𝐴 ) ) → 𝑤 ∈ ( 𝐴 ·P 𝐵 ) ) |
| 102 | 16 101 | rexlimddv | ⊢ ( ( 𝐴 ∈ P ∧ 𝑤 <Q 1Q ) → 𝑤 ∈ ( 𝐴 ·P 𝐵 ) ) |
| 103 | 102 | ex | ⊢ ( 𝐴 ∈ P → ( 𝑤 <Q 1Q → 𝑤 ∈ ( 𝐴 ·P 𝐵 ) ) ) |
| 104 | 3 103 | biimtrid | ⊢ ( 𝐴 ∈ P → ( 𝑤 ∈ 1P → 𝑤 ∈ ( 𝐴 ·P 𝐵 ) ) ) |
| 105 | 104 | ssrdv | ⊢ ( 𝐴 ∈ P → 1P ⊆ ( 𝐴 ·P 𝐵 ) ) |