This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property of reciprocal for positive fractions. Proposition 9-2.6(iv) of Gleason p. 120. (Contributed by NM, 9-Mar-1996) (Revised by Mario Carneiro, 10-May-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltrnq | ⊢ ( 𝐴 <Q 𝐵 ↔ ( *Q ‘ 𝐵 ) <Q ( *Q ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrelnq | ⊢ <Q ⊆ ( Q × Q ) | |
| 2 | 1 | brel | ⊢ ( 𝐴 <Q 𝐵 → ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ) ) |
| 3 | 1 | brel | ⊢ ( ( *Q ‘ 𝐵 ) <Q ( *Q ‘ 𝐴 ) → ( ( *Q ‘ 𝐵 ) ∈ Q ∧ ( *Q ‘ 𝐴 ) ∈ Q ) ) |
| 4 | dmrecnq | ⊢ dom *Q = Q | |
| 5 | 0nnq | ⊢ ¬ ∅ ∈ Q | |
| 6 | 4 5 | ndmfvrcl | ⊢ ( ( *Q ‘ 𝐵 ) ∈ Q → 𝐵 ∈ Q ) |
| 7 | 4 5 | ndmfvrcl | ⊢ ( ( *Q ‘ 𝐴 ) ∈ Q → 𝐴 ∈ Q ) |
| 8 | 6 7 | anim12ci | ⊢ ( ( ( *Q ‘ 𝐵 ) ∈ Q ∧ ( *Q ‘ 𝐴 ) ∈ Q ) → ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ) ) |
| 9 | 3 8 | syl | ⊢ ( ( *Q ‘ 𝐵 ) <Q ( *Q ‘ 𝐴 ) → ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ) ) |
| 10 | breq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 <Q 𝑦 ↔ 𝐴 <Q 𝑦 ) ) | |
| 11 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( *Q ‘ 𝑥 ) = ( *Q ‘ 𝐴 ) ) | |
| 12 | 11 | breq2d | ⊢ ( 𝑥 = 𝐴 → ( ( *Q ‘ 𝑦 ) <Q ( *Q ‘ 𝑥 ) ↔ ( *Q ‘ 𝑦 ) <Q ( *Q ‘ 𝐴 ) ) ) |
| 13 | 10 12 | bibi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 <Q 𝑦 ↔ ( *Q ‘ 𝑦 ) <Q ( *Q ‘ 𝑥 ) ) ↔ ( 𝐴 <Q 𝑦 ↔ ( *Q ‘ 𝑦 ) <Q ( *Q ‘ 𝐴 ) ) ) ) |
| 14 | breq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 <Q 𝑦 ↔ 𝐴 <Q 𝐵 ) ) | |
| 15 | fveq2 | ⊢ ( 𝑦 = 𝐵 → ( *Q ‘ 𝑦 ) = ( *Q ‘ 𝐵 ) ) | |
| 16 | 15 | breq1d | ⊢ ( 𝑦 = 𝐵 → ( ( *Q ‘ 𝑦 ) <Q ( *Q ‘ 𝐴 ) ↔ ( *Q ‘ 𝐵 ) <Q ( *Q ‘ 𝐴 ) ) ) |
| 17 | 14 16 | bibi12d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 <Q 𝑦 ↔ ( *Q ‘ 𝑦 ) <Q ( *Q ‘ 𝐴 ) ) ↔ ( 𝐴 <Q 𝐵 ↔ ( *Q ‘ 𝐵 ) <Q ( *Q ‘ 𝐴 ) ) ) ) |
| 18 | recclnq | ⊢ ( 𝑥 ∈ Q → ( *Q ‘ 𝑥 ) ∈ Q ) | |
| 19 | recclnq | ⊢ ( 𝑦 ∈ Q → ( *Q ‘ 𝑦 ) ∈ Q ) | |
| 20 | mulclnq | ⊢ ( ( ( *Q ‘ 𝑥 ) ∈ Q ∧ ( *Q ‘ 𝑦 ) ∈ Q ) → ( ( *Q ‘ 𝑥 ) ·Q ( *Q ‘ 𝑦 ) ) ∈ Q ) | |
| 21 | 18 19 20 | syl2an | ⊢ ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) → ( ( *Q ‘ 𝑥 ) ·Q ( *Q ‘ 𝑦 ) ) ∈ Q ) |
| 22 | ltmnq | ⊢ ( ( ( *Q ‘ 𝑥 ) ·Q ( *Q ‘ 𝑦 ) ) ∈ Q → ( 𝑥 <Q 𝑦 ↔ ( ( ( *Q ‘ 𝑥 ) ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) <Q ( ( ( *Q ‘ 𝑥 ) ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑦 ) ) ) | |
| 23 | 21 22 | syl | ⊢ ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) → ( 𝑥 <Q 𝑦 ↔ ( ( ( *Q ‘ 𝑥 ) ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) <Q ( ( ( *Q ‘ 𝑥 ) ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑦 ) ) ) |
| 24 | mulcomnq | ⊢ ( ( ( *Q ‘ 𝑥 ) ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) = ( 𝑥 ·Q ( ( *Q ‘ 𝑥 ) ·Q ( *Q ‘ 𝑦 ) ) ) | |
| 25 | mulassnq | ⊢ ( ( 𝑥 ·Q ( *Q ‘ 𝑥 ) ) ·Q ( *Q ‘ 𝑦 ) ) = ( 𝑥 ·Q ( ( *Q ‘ 𝑥 ) ·Q ( *Q ‘ 𝑦 ) ) ) | |
| 26 | mulcomnq | ⊢ ( ( 𝑥 ·Q ( *Q ‘ 𝑥 ) ) ·Q ( *Q ‘ 𝑦 ) ) = ( ( *Q ‘ 𝑦 ) ·Q ( 𝑥 ·Q ( *Q ‘ 𝑥 ) ) ) | |
| 27 | 24 25 26 | 3eqtr2i | ⊢ ( ( ( *Q ‘ 𝑥 ) ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) = ( ( *Q ‘ 𝑦 ) ·Q ( 𝑥 ·Q ( *Q ‘ 𝑥 ) ) ) |
| 28 | recidnq | ⊢ ( 𝑥 ∈ Q → ( 𝑥 ·Q ( *Q ‘ 𝑥 ) ) = 1Q ) | |
| 29 | 28 | oveq2d | ⊢ ( 𝑥 ∈ Q → ( ( *Q ‘ 𝑦 ) ·Q ( 𝑥 ·Q ( *Q ‘ 𝑥 ) ) ) = ( ( *Q ‘ 𝑦 ) ·Q 1Q ) ) |
| 30 | mulidnq | ⊢ ( ( *Q ‘ 𝑦 ) ∈ Q → ( ( *Q ‘ 𝑦 ) ·Q 1Q ) = ( *Q ‘ 𝑦 ) ) | |
| 31 | 19 30 | syl | ⊢ ( 𝑦 ∈ Q → ( ( *Q ‘ 𝑦 ) ·Q 1Q ) = ( *Q ‘ 𝑦 ) ) |
| 32 | 29 31 | sylan9eq | ⊢ ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) → ( ( *Q ‘ 𝑦 ) ·Q ( 𝑥 ·Q ( *Q ‘ 𝑥 ) ) ) = ( *Q ‘ 𝑦 ) ) |
| 33 | 27 32 | eqtrid | ⊢ ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) → ( ( ( *Q ‘ 𝑥 ) ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) = ( *Q ‘ 𝑦 ) ) |
| 34 | mulassnq | ⊢ ( ( ( *Q ‘ 𝑥 ) ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑦 ) = ( ( *Q ‘ 𝑥 ) ·Q ( ( *Q ‘ 𝑦 ) ·Q 𝑦 ) ) | |
| 35 | mulcomnq | ⊢ ( ( *Q ‘ 𝑦 ) ·Q 𝑦 ) = ( 𝑦 ·Q ( *Q ‘ 𝑦 ) ) | |
| 36 | 35 | oveq2i | ⊢ ( ( *Q ‘ 𝑥 ) ·Q ( ( *Q ‘ 𝑦 ) ·Q 𝑦 ) ) = ( ( *Q ‘ 𝑥 ) ·Q ( 𝑦 ·Q ( *Q ‘ 𝑦 ) ) ) |
| 37 | 34 36 | eqtri | ⊢ ( ( ( *Q ‘ 𝑥 ) ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑦 ) = ( ( *Q ‘ 𝑥 ) ·Q ( 𝑦 ·Q ( *Q ‘ 𝑦 ) ) ) |
| 38 | recidnq | ⊢ ( 𝑦 ∈ Q → ( 𝑦 ·Q ( *Q ‘ 𝑦 ) ) = 1Q ) | |
| 39 | 38 | oveq2d | ⊢ ( 𝑦 ∈ Q → ( ( *Q ‘ 𝑥 ) ·Q ( 𝑦 ·Q ( *Q ‘ 𝑦 ) ) ) = ( ( *Q ‘ 𝑥 ) ·Q 1Q ) ) |
| 40 | mulidnq | ⊢ ( ( *Q ‘ 𝑥 ) ∈ Q → ( ( *Q ‘ 𝑥 ) ·Q 1Q ) = ( *Q ‘ 𝑥 ) ) | |
| 41 | 18 40 | syl | ⊢ ( 𝑥 ∈ Q → ( ( *Q ‘ 𝑥 ) ·Q 1Q ) = ( *Q ‘ 𝑥 ) ) |
| 42 | 39 41 | sylan9eqr | ⊢ ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) → ( ( *Q ‘ 𝑥 ) ·Q ( 𝑦 ·Q ( *Q ‘ 𝑦 ) ) ) = ( *Q ‘ 𝑥 ) ) |
| 43 | 37 42 | eqtrid | ⊢ ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) → ( ( ( *Q ‘ 𝑥 ) ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑦 ) = ( *Q ‘ 𝑥 ) ) |
| 44 | 33 43 | breq12d | ⊢ ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) → ( ( ( ( *Q ‘ 𝑥 ) ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) <Q ( ( ( *Q ‘ 𝑥 ) ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑦 ) ↔ ( *Q ‘ 𝑦 ) <Q ( *Q ‘ 𝑥 ) ) ) |
| 45 | 23 44 | bitrd | ⊢ ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) → ( 𝑥 <Q 𝑦 ↔ ( *Q ‘ 𝑦 ) <Q ( *Q ‘ 𝑥 ) ) ) |
| 46 | 13 17 45 | vtocl2ga | ⊢ ( ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ) → ( 𝐴 <Q 𝐵 ↔ ( *Q ‘ 𝐵 ) <Q ( *Q ‘ 𝐴 ) ) ) |
| 47 | 2 9 46 | pm5.21nii | ⊢ ( 𝐴 <Q 𝐵 ↔ ( *Q ‘ 𝐵 ) <Q ( *Q ‘ 𝐴 ) ) |