This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reciprocal of reciprocal of positive fraction. (Contributed by NM, 26-Apr-1996) (Revised by Mario Carneiro, 29-Apr-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | recrecnq | ⊢ ( 𝐴 ∈ Q → ( *Q ‘ ( *Q ‘ 𝐴 ) ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2fveq3 | ⊢ ( 𝑥 = 𝐴 → ( *Q ‘ ( *Q ‘ 𝑥 ) ) = ( *Q ‘ ( *Q ‘ 𝐴 ) ) ) | |
| 2 | id | ⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) | |
| 3 | 1 2 | eqeq12d | ⊢ ( 𝑥 = 𝐴 → ( ( *Q ‘ ( *Q ‘ 𝑥 ) ) = 𝑥 ↔ ( *Q ‘ ( *Q ‘ 𝐴 ) ) = 𝐴 ) ) |
| 4 | mulcomnq | ⊢ ( ( *Q ‘ 𝑥 ) ·Q 𝑥 ) = ( 𝑥 ·Q ( *Q ‘ 𝑥 ) ) | |
| 5 | recidnq | ⊢ ( 𝑥 ∈ Q → ( 𝑥 ·Q ( *Q ‘ 𝑥 ) ) = 1Q ) | |
| 6 | 4 5 | eqtrid | ⊢ ( 𝑥 ∈ Q → ( ( *Q ‘ 𝑥 ) ·Q 𝑥 ) = 1Q ) |
| 7 | recclnq | ⊢ ( 𝑥 ∈ Q → ( *Q ‘ 𝑥 ) ∈ Q ) | |
| 8 | recmulnq | ⊢ ( ( *Q ‘ 𝑥 ) ∈ Q → ( ( *Q ‘ ( *Q ‘ 𝑥 ) ) = 𝑥 ↔ ( ( *Q ‘ 𝑥 ) ·Q 𝑥 ) = 1Q ) ) | |
| 9 | 7 8 | syl | ⊢ ( 𝑥 ∈ Q → ( ( *Q ‘ ( *Q ‘ 𝑥 ) ) = 𝑥 ↔ ( ( *Q ‘ 𝑥 ) ·Q 𝑥 ) = 1Q ) ) |
| 10 | 6 9 | mpbird | ⊢ ( 𝑥 ∈ Q → ( *Q ‘ ( *Q ‘ 𝑥 ) ) = 𝑥 ) |
| 11 | 3 10 | vtoclga | ⊢ ( 𝐴 ∈ Q → ( *Q ‘ ( *Q ‘ 𝐴 ) ) = 𝐴 ) |