This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in positive reals. (Contributed by NM, 16-Feb-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elnp | ⊢ ( 𝐴 ∈ P ↔ ( ( ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q ) ∧ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴 ) ∧ ∃ 𝑦 ∈ 𝐴 𝑥 <Q 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | ⊢ ( 𝐴 ∈ P → 𝐴 ∈ V ) | |
| 2 | pssss | ⊢ ( 𝐴 ⊊ Q → 𝐴 ⊆ Q ) | |
| 3 | nqex | ⊢ Q ∈ V | |
| 4 | 3 | ssex | ⊢ ( 𝐴 ⊆ Q → 𝐴 ∈ V ) |
| 5 | 2 4 | syl | ⊢ ( 𝐴 ⊊ Q → 𝐴 ∈ V ) |
| 6 | 5 | ad2antlr | ⊢ ( ( ( ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q ) ∧ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴 ) ∧ ∃ 𝑦 ∈ 𝐴 𝑥 <Q 𝑦 ) ) → 𝐴 ∈ V ) |
| 7 | psseq2 | ⊢ ( 𝑧 = 𝐴 → ( ∅ ⊊ 𝑧 ↔ ∅ ⊊ 𝐴 ) ) | |
| 8 | psseq1 | ⊢ ( 𝑧 = 𝐴 → ( 𝑧 ⊊ Q ↔ 𝐴 ⊊ Q ) ) | |
| 9 | 7 8 | anbi12d | ⊢ ( 𝑧 = 𝐴 → ( ( ∅ ⊊ 𝑧 ∧ 𝑧 ⊊ Q ) ↔ ( ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q ) ) ) |
| 10 | eleq2 | ⊢ ( 𝑧 = 𝐴 → ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝐴 ) ) | |
| 11 | 10 | imbi2d | ⊢ ( 𝑧 = 𝐴 → ( ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝑧 ) ↔ ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴 ) ) ) |
| 12 | 11 | albidv | ⊢ ( 𝑧 = 𝐴 → ( ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝑧 ) ↔ ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴 ) ) ) |
| 13 | rexeq | ⊢ ( 𝑧 = 𝐴 → ( ∃ 𝑦 ∈ 𝑧 𝑥 <Q 𝑦 ↔ ∃ 𝑦 ∈ 𝐴 𝑥 <Q 𝑦 ) ) | |
| 14 | 12 13 | anbi12d | ⊢ ( 𝑧 = 𝐴 → ( ( ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑧 𝑥 <Q 𝑦 ) ↔ ( ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴 ) ∧ ∃ 𝑦 ∈ 𝐴 𝑥 <Q 𝑦 ) ) ) |
| 15 | 14 | raleqbi1dv | ⊢ ( 𝑧 = 𝐴 → ( ∀ 𝑥 ∈ 𝑧 ( ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑧 𝑥 <Q 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴 ) ∧ ∃ 𝑦 ∈ 𝐴 𝑥 <Q 𝑦 ) ) ) |
| 16 | 9 15 | anbi12d | ⊢ ( 𝑧 = 𝐴 → ( ( ( ∅ ⊊ 𝑧 ∧ 𝑧 ⊊ Q ) ∧ ∀ 𝑥 ∈ 𝑧 ( ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑧 𝑥 <Q 𝑦 ) ) ↔ ( ( ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q ) ∧ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴 ) ∧ ∃ 𝑦 ∈ 𝐴 𝑥 <Q 𝑦 ) ) ) ) |
| 17 | df-np | ⊢ P = { 𝑧 ∣ ( ( ∅ ⊊ 𝑧 ∧ 𝑧 ⊊ Q ) ∧ ∀ 𝑥 ∈ 𝑧 ( ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑧 𝑥 <Q 𝑦 ) ) } | |
| 18 | 16 17 | elab2g | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ P ↔ ( ( ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q ) ∧ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴 ) ∧ ∃ 𝑦 ∈ 𝐴 𝑥 <Q 𝑦 ) ) ) ) |
| 19 | 1 6 18 | pm5.21nii | ⊢ ( 𝐴 ∈ P ↔ ( ( ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q ) ∧ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴 ) ∧ ∃ 𝑦 ∈ 𝐴 𝑥 <Q 𝑦 ) ) ) |