This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Each limit stage in the cumulative hierarchy is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r1limwun | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ Lim 𝐴 ) → ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1tr | ⊢ Tr ( 𝑅1 ‘ 𝐴 ) | |
| 2 | 1 | a1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ Lim 𝐴 ) → Tr ( 𝑅1 ‘ 𝐴 ) ) |
| 3 | limelon | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ Lim 𝐴 ) → 𝐴 ∈ On ) | |
| 4 | r1fnon | ⊢ 𝑅1 Fn On | |
| 5 | 4 | fndmi | ⊢ dom 𝑅1 = On |
| 6 | 3 5 | eleqtrrdi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ Lim 𝐴 ) → 𝐴 ∈ dom 𝑅1 ) |
| 7 | onssr1 | ⊢ ( 𝐴 ∈ dom 𝑅1 → 𝐴 ⊆ ( 𝑅1 ‘ 𝐴 ) ) | |
| 8 | 6 7 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ Lim 𝐴 ) → 𝐴 ⊆ ( 𝑅1 ‘ 𝐴 ) ) |
| 9 | 0ellim | ⊢ ( Lim 𝐴 → ∅ ∈ 𝐴 ) | |
| 10 | 9 | adantl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ Lim 𝐴 ) → ∅ ∈ 𝐴 ) |
| 11 | 8 10 | sseldd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ Lim 𝐴 ) → ∅ ∈ ( 𝑅1 ‘ 𝐴 ) ) |
| 12 | 11 | ne0d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ Lim 𝐴 ) → ( 𝑅1 ‘ 𝐴 ) ≠ ∅ ) |
| 13 | rankuni | ⊢ ( rank ‘ ∪ 𝑥 ) = ∪ ( rank ‘ 𝑥 ) | |
| 14 | rankon | ⊢ ( rank ‘ 𝑥 ) ∈ On | |
| 15 | eloni | ⊢ ( ( rank ‘ 𝑥 ) ∈ On → Ord ( rank ‘ 𝑥 ) ) | |
| 16 | orduniss | ⊢ ( Ord ( rank ‘ 𝑥 ) → ∪ ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑥 ) ) | |
| 17 | 14 15 16 | mp2b | ⊢ ∪ ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑥 ) |
| 18 | 17 | a1i | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ Lim 𝐴 ) ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) → ∪ ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑥 ) ) |
| 19 | rankr1ai | ⊢ ( 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) → ( rank ‘ 𝑥 ) ∈ 𝐴 ) | |
| 20 | 19 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ Lim 𝐴 ) ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) → ( rank ‘ 𝑥 ) ∈ 𝐴 ) |
| 21 | onuni | ⊢ ( ( rank ‘ 𝑥 ) ∈ On → ∪ ( rank ‘ 𝑥 ) ∈ On ) | |
| 22 | 14 21 | ax-mp | ⊢ ∪ ( rank ‘ 𝑥 ) ∈ On |
| 23 | 3 | adantr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ Lim 𝐴 ) ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) → 𝐴 ∈ On ) |
| 24 | ontr2 | ⊢ ( ( ∪ ( rank ‘ 𝑥 ) ∈ On ∧ 𝐴 ∈ On ) → ( ( ∪ ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑥 ) ∧ ( rank ‘ 𝑥 ) ∈ 𝐴 ) → ∪ ( rank ‘ 𝑥 ) ∈ 𝐴 ) ) | |
| 25 | 22 23 24 | sylancr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ Lim 𝐴 ) ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) → ( ( ∪ ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑥 ) ∧ ( rank ‘ 𝑥 ) ∈ 𝐴 ) → ∪ ( rank ‘ 𝑥 ) ∈ 𝐴 ) ) |
| 26 | 18 20 25 | mp2and | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ Lim 𝐴 ) ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) → ∪ ( rank ‘ 𝑥 ) ∈ 𝐴 ) |
| 27 | 13 26 | eqeltrid | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ Lim 𝐴 ) ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) → ( rank ‘ ∪ 𝑥 ) ∈ 𝐴 ) |
| 28 | r1elwf | ⊢ ( 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) → 𝑥 ∈ ∪ ( 𝑅1 “ On ) ) | |
| 29 | 28 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ Lim 𝐴 ) ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) → 𝑥 ∈ ∪ ( 𝑅1 “ On ) ) |
| 30 | uniwf | ⊢ ( 𝑥 ∈ ∪ ( 𝑅1 “ On ) ↔ ∪ 𝑥 ∈ ∪ ( 𝑅1 “ On ) ) | |
| 31 | 29 30 | sylib | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ Lim 𝐴 ) ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) → ∪ 𝑥 ∈ ∪ ( 𝑅1 “ On ) ) |
| 32 | 6 | adantr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ Lim 𝐴 ) ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) → 𝐴 ∈ dom 𝑅1 ) |
| 33 | rankr1ag | ⊢ ( ( ∪ 𝑥 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐴 ∈ dom 𝑅1 ) → ( ∪ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ↔ ( rank ‘ ∪ 𝑥 ) ∈ 𝐴 ) ) | |
| 34 | 31 32 33 | syl2anc | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ Lim 𝐴 ) ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) → ( ∪ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ↔ ( rank ‘ ∪ 𝑥 ) ∈ 𝐴 ) ) |
| 35 | 27 34 | mpbird | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ Lim 𝐴 ) ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) → ∪ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) |
| 36 | r1pwcl | ⊢ ( Lim 𝐴 → ( 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ↔ 𝒫 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) | |
| 37 | 36 | adantl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ Lim 𝐴 ) → ( 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ↔ 𝒫 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 38 | 37 | biimpa | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ Lim 𝐴 ) ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) → 𝒫 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) |
| 39 | 28 | ad2antlr | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ Lim 𝐴 ) ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐴 ) ) → 𝑥 ∈ ∪ ( 𝑅1 “ On ) ) |
| 40 | r1elwf | ⊢ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐴 ) → 𝑦 ∈ ∪ ( 𝑅1 “ On ) ) | |
| 41 | 40 | adantl | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ Lim 𝐴 ) ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐴 ) ) → 𝑦 ∈ ∪ ( 𝑅1 “ On ) ) |
| 42 | rankprb | ⊢ ( ( 𝑥 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝑦 ∈ ∪ ( 𝑅1 “ On ) ) → ( rank ‘ { 𝑥 , 𝑦 } ) = suc ( ( rank ‘ 𝑥 ) ∪ ( rank ‘ 𝑦 ) ) ) | |
| 43 | 39 41 42 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ Lim 𝐴 ) ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐴 ) ) → ( rank ‘ { 𝑥 , 𝑦 } ) = suc ( ( rank ‘ 𝑥 ) ∪ ( rank ‘ 𝑦 ) ) ) |
| 44 | limord | ⊢ ( Lim 𝐴 → Ord 𝐴 ) | |
| 45 | 44 | ad3antlr | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ Lim 𝐴 ) ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐴 ) ) → Ord 𝐴 ) |
| 46 | 20 | adantr | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ Lim 𝐴 ) ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐴 ) ) → ( rank ‘ 𝑥 ) ∈ 𝐴 ) |
| 47 | rankr1ai | ⊢ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐴 ) → ( rank ‘ 𝑦 ) ∈ 𝐴 ) | |
| 48 | 47 | adantl | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ Lim 𝐴 ) ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐴 ) ) → ( rank ‘ 𝑦 ) ∈ 𝐴 ) |
| 49 | ordunel | ⊢ ( ( Ord 𝐴 ∧ ( rank ‘ 𝑥 ) ∈ 𝐴 ∧ ( rank ‘ 𝑦 ) ∈ 𝐴 ) → ( ( rank ‘ 𝑥 ) ∪ ( rank ‘ 𝑦 ) ) ∈ 𝐴 ) | |
| 50 | 45 46 48 49 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ Lim 𝐴 ) ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐴 ) ) → ( ( rank ‘ 𝑥 ) ∪ ( rank ‘ 𝑦 ) ) ∈ 𝐴 ) |
| 51 | limsuc | ⊢ ( Lim 𝐴 → ( ( ( rank ‘ 𝑥 ) ∪ ( rank ‘ 𝑦 ) ) ∈ 𝐴 ↔ suc ( ( rank ‘ 𝑥 ) ∪ ( rank ‘ 𝑦 ) ) ∈ 𝐴 ) ) | |
| 52 | 51 | ad3antlr | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ Lim 𝐴 ) ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐴 ) ) → ( ( ( rank ‘ 𝑥 ) ∪ ( rank ‘ 𝑦 ) ) ∈ 𝐴 ↔ suc ( ( rank ‘ 𝑥 ) ∪ ( rank ‘ 𝑦 ) ) ∈ 𝐴 ) ) |
| 53 | 50 52 | mpbid | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ Lim 𝐴 ) ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐴 ) ) → suc ( ( rank ‘ 𝑥 ) ∪ ( rank ‘ 𝑦 ) ) ∈ 𝐴 ) |
| 54 | 43 53 | eqeltrd | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ Lim 𝐴 ) ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐴 ) ) → ( rank ‘ { 𝑥 , 𝑦 } ) ∈ 𝐴 ) |
| 55 | prwf | ⊢ ( ( 𝑥 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝑦 ∈ ∪ ( 𝑅1 “ On ) ) → { 𝑥 , 𝑦 } ∈ ∪ ( 𝑅1 “ On ) ) | |
| 56 | 39 41 55 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ Lim 𝐴 ) ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐴 ) ) → { 𝑥 , 𝑦 } ∈ ∪ ( 𝑅1 “ On ) ) |
| 57 | 32 | adantr | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ Lim 𝐴 ) ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐴 ) ) → 𝐴 ∈ dom 𝑅1 ) |
| 58 | rankr1ag | ⊢ ( ( { 𝑥 , 𝑦 } ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐴 ∈ dom 𝑅1 ) → ( { 𝑥 , 𝑦 } ∈ ( 𝑅1 ‘ 𝐴 ) ↔ ( rank ‘ { 𝑥 , 𝑦 } ) ∈ 𝐴 ) ) | |
| 59 | 56 57 58 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ Lim 𝐴 ) ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐴 ) ) → ( { 𝑥 , 𝑦 } ∈ ( 𝑅1 ‘ 𝐴 ) ↔ ( rank ‘ { 𝑥 , 𝑦 } ) ∈ 𝐴 ) ) |
| 60 | 54 59 | mpbird | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ Lim 𝐴 ) ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐴 ) ) → { 𝑥 , 𝑦 } ∈ ( 𝑅1 ‘ 𝐴 ) ) |
| 61 | 60 | ralrimiva | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ Lim 𝐴 ) ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) → ∀ 𝑦 ∈ ( 𝑅1 ‘ 𝐴 ) { 𝑥 , 𝑦 } ∈ ( 𝑅1 ‘ 𝐴 ) ) |
| 62 | 35 38 61 | 3jca | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ Lim 𝐴 ) ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) → ( ∪ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ∧ 𝒫 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ ( 𝑅1 ‘ 𝐴 ) { 𝑥 , 𝑦 } ∈ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 63 | 62 | ralrimiva | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ Lim 𝐴 ) → ∀ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ( ∪ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ∧ 𝒫 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ ( 𝑅1 ‘ 𝐴 ) { 𝑥 , 𝑦 } ∈ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 64 | fvex | ⊢ ( 𝑅1 ‘ 𝐴 ) ∈ V | |
| 65 | iswun | ⊢ ( ( 𝑅1 ‘ 𝐴 ) ∈ V → ( ( 𝑅1 ‘ 𝐴 ) ∈ WUni ↔ ( Tr ( 𝑅1 ‘ 𝐴 ) ∧ ( 𝑅1 ‘ 𝐴 ) ≠ ∅ ∧ ∀ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ( ∪ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ∧ 𝒫 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ ( 𝑅1 ‘ 𝐴 ) { 𝑥 , 𝑦 } ∈ ( 𝑅1 ‘ 𝐴 ) ) ) ) ) | |
| 66 | 64 65 | ax-mp | ⊢ ( ( 𝑅1 ‘ 𝐴 ) ∈ WUni ↔ ( Tr ( 𝑅1 ‘ 𝐴 ) ∧ ( 𝑅1 ‘ 𝐴 ) ≠ ∅ ∧ ∀ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ( ∪ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ∧ 𝒫 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ∧ ∀ 𝑦 ∈ ( 𝑅1 ‘ 𝐴 ) { 𝑥 , 𝑦 } ∈ ( 𝑅1 ‘ 𝐴 ) ) ) ) |
| 67 | 2 12 63 66 | syl3anbrc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ Lim 𝐴 ) → ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) |