This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The rank of an unordered pair. Part of Exercise 30 of Enderton p. 207. (Contributed by Mario Carneiro, 10-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rankprb | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → ( rank ‘ { 𝐴 , 𝐵 } ) = suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snwf | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → { 𝐴 } ∈ ∪ ( 𝑅1 “ On ) ) | |
| 2 | snwf | ⊢ ( 𝐵 ∈ ∪ ( 𝑅1 “ On ) → { 𝐵 } ∈ ∪ ( 𝑅1 “ On ) ) | |
| 3 | rankunb | ⊢ ( ( { 𝐴 } ∈ ∪ ( 𝑅1 “ On ) ∧ { 𝐵 } ∈ ∪ ( 𝑅1 “ On ) ) → ( rank ‘ ( { 𝐴 } ∪ { 𝐵 } ) ) = ( ( rank ‘ { 𝐴 } ) ∪ ( rank ‘ { 𝐵 } ) ) ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → ( rank ‘ ( { 𝐴 } ∪ { 𝐵 } ) ) = ( ( rank ‘ { 𝐴 } ) ∪ ( rank ‘ { 𝐵 } ) ) ) |
| 5 | ranksnb | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ { 𝐴 } ) = suc ( rank ‘ 𝐴 ) ) | |
| 6 | ranksnb | ⊢ ( 𝐵 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ { 𝐵 } ) = suc ( rank ‘ 𝐵 ) ) | |
| 7 | uneq12 | ⊢ ( ( ( rank ‘ { 𝐴 } ) = suc ( rank ‘ 𝐴 ) ∧ ( rank ‘ { 𝐵 } ) = suc ( rank ‘ 𝐵 ) ) → ( ( rank ‘ { 𝐴 } ) ∪ ( rank ‘ { 𝐵 } ) ) = ( suc ( rank ‘ 𝐴 ) ∪ suc ( rank ‘ 𝐵 ) ) ) | |
| 8 | 5 6 7 | syl2an | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → ( ( rank ‘ { 𝐴 } ) ∪ ( rank ‘ { 𝐵 } ) ) = ( suc ( rank ‘ 𝐴 ) ∪ suc ( rank ‘ 𝐵 ) ) ) |
| 9 | 4 8 | eqtrd | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → ( rank ‘ ( { 𝐴 } ∪ { 𝐵 } ) ) = ( suc ( rank ‘ 𝐴 ) ∪ suc ( rank ‘ 𝐵 ) ) ) |
| 10 | df-pr | ⊢ { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } ) | |
| 11 | 10 | fveq2i | ⊢ ( rank ‘ { 𝐴 , 𝐵 } ) = ( rank ‘ ( { 𝐴 } ∪ { 𝐵 } ) ) |
| 12 | rankon | ⊢ ( rank ‘ 𝐴 ) ∈ On | |
| 13 | 12 | onordi | ⊢ Ord ( rank ‘ 𝐴 ) |
| 14 | rankon | ⊢ ( rank ‘ 𝐵 ) ∈ On | |
| 15 | 14 | onordi | ⊢ Ord ( rank ‘ 𝐵 ) |
| 16 | ordsucun | ⊢ ( ( Ord ( rank ‘ 𝐴 ) ∧ Ord ( rank ‘ 𝐵 ) ) → suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) = ( suc ( rank ‘ 𝐴 ) ∪ suc ( rank ‘ 𝐵 ) ) ) | |
| 17 | 13 15 16 | mp2an | ⊢ suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) = ( suc ( rank ‘ 𝐴 ) ∪ suc ( rank ‘ 𝐵 ) ) |
| 18 | 9 11 17 | 3eqtr4g | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → ( rank ‘ { 𝐴 , 𝐵 } ) = suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) |