This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The rank of a union. Part of Exercise 4 of Kunen p. 107. (Contributed by NM, 15-Sep-2006) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rankuni | ⊢ ( rank ‘ ∪ 𝐴 ) = ∪ ( rank ‘ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieq | ⊢ ( 𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴 ) | |
| 2 | 1 | fveq2d | ⊢ ( 𝑥 = 𝐴 → ( rank ‘ ∪ 𝑥 ) = ( rank ‘ ∪ 𝐴 ) ) |
| 3 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( rank ‘ 𝑥 ) = ( rank ‘ 𝐴 ) ) | |
| 4 | 3 | unieqd | ⊢ ( 𝑥 = 𝐴 → ∪ ( rank ‘ 𝑥 ) = ∪ ( rank ‘ 𝐴 ) ) |
| 5 | 2 4 | eqeq12d | ⊢ ( 𝑥 = 𝐴 → ( ( rank ‘ ∪ 𝑥 ) = ∪ ( rank ‘ 𝑥 ) ↔ ( rank ‘ ∪ 𝐴 ) = ∪ ( rank ‘ 𝐴 ) ) ) |
| 6 | vex | ⊢ 𝑥 ∈ V | |
| 7 | 6 | rankuni2 | ⊢ ( rank ‘ ∪ 𝑥 ) = ∪ 𝑧 ∈ 𝑥 ( rank ‘ 𝑧 ) |
| 8 | fvex | ⊢ ( rank ‘ 𝑧 ) ∈ V | |
| 9 | 8 | dfiun2 | ⊢ ∪ 𝑧 ∈ 𝑥 ( rank ‘ 𝑧 ) = ∪ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑥 𝑦 = ( rank ‘ 𝑧 ) } |
| 10 | 7 9 | eqtri | ⊢ ( rank ‘ ∪ 𝑥 ) = ∪ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑥 𝑦 = ( rank ‘ 𝑧 ) } |
| 11 | df-rex | ⊢ ( ∃ 𝑧 ∈ 𝑥 𝑦 = ( rank ‘ 𝑧 ) ↔ ∃ 𝑧 ( 𝑧 ∈ 𝑥 ∧ 𝑦 = ( rank ‘ 𝑧 ) ) ) | |
| 12 | 6 | rankel | ⊢ ( 𝑧 ∈ 𝑥 → ( rank ‘ 𝑧 ) ∈ ( rank ‘ 𝑥 ) ) |
| 13 | 12 | anim1i | ⊢ ( ( 𝑧 ∈ 𝑥 ∧ 𝑦 = ( rank ‘ 𝑧 ) ) → ( ( rank ‘ 𝑧 ) ∈ ( rank ‘ 𝑥 ) ∧ 𝑦 = ( rank ‘ 𝑧 ) ) ) |
| 14 | 13 | eximi | ⊢ ( ∃ 𝑧 ( 𝑧 ∈ 𝑥 ∧ 𝑦 = ( rank ‘ 𝑧 ) ) → ∃ 𝑧 ( ( rank ‘ 𝑧 ) ∈ ( rank ‘ 𝑥 ) ∧ 𝑦 = ( rank ‘ 𝑧 ) ) ) |
| 15 | 19.42v | ⊢ ( ∃ 𝑧 ( 𝑦 ∈ ( rank ‘ 𝑥 ) ∧ 𝑦 = ( rank ‘ 𝑧 ) ) ↔ ( 𝑦 ∈ ( rank ‘ 𝑥 ) ∧ ∃ 𝑧 𝑦 = ( rank ‘ 𝑧 ) ) ) | |
| 16 | eleq1 | ⊢ ( 𝑦 = ( rank ‘ 𝑧 ) → ( 𝑦 ∈ ( rank ‘ 𝑥 ) ↔ ( rank ‘ 𝑧 ) ∈ ( rank ‘ 𝑥 ) ) ) | |
| 17 | 16 | pm5.32ri | ⊢ ( ( 𝑦 ∈ ( rank ‘ 𝑥 ) ∧ 𝑦 = ( rank ‘ 𝑧 ) ) ↔ ( ( rank ‘ 𝑧 ) ∈ ( rank ‘ 𝑥 ) ∧ 𝑦 = ( rank ‘ 𝑧 ) ) ) |
| 18 | 17 | exbii | ⊢ ( ∃ 𝑧 ( 𝑦 ∈ ( rank ‘ 𝑥 ) ∧ 𝑦 = ( rank ‘ 𝑧 ) ) ↔ ∃ 𝑧 ( ( rank ‘ 𝑧 ) ∈ ( rank ‘ 𝑥 ) ∧ 𝑦 = ( rank ‘ 𝑧 ) ) ) |
| 19 | simpl | ⊢ ( ( 𝑦 ∈ ( rank ‘ 𝑥 ) ∧ ∃ 𝑧 𝑦 = ( rank ‘ 𝑧 ) ) → 𝑦 ∈ ( rank ‘ 𝑥 ) ) | |
| 20 | rankon | ⊢ ( rank ‘ 𝑥 ) ∈ On | |
| 21 | 20 | oneli | ⊢ ( 𝑦 ∈ ( rank ‘ 𝑥 ) → 𝑦 ∈ On ) |
| 22 | r1fnon | ⊢ 𝑅1 Fn On | |
| 23 | fndm | ⊢ ( 𝑅1 Fn On → dom 𝑅1 = On ) | |
| 24 | 22 23 | ax-mp | ⊢ dom 𝑅1 = On |
| 25 | 21 24 | eleqtrrdi | ⊢ ( 𝑦 ∈ ( rank ‘ 𝑥 ) → 𝑦 ∈ dom 𝑅1 ) |
| 26 | rankr1id | ⊢ ( 𝑦 ∈ dom 𝑅1 ↔ ( rank ‘ ( 𝑅1 ‘ 𝑦 ) ) = 𝑦 ) | |
| 27 | 25 26 | sylib | ⊢ ( 𝑦 ∈ ( rank ‘ 𝑥 ) → ( rank ‘ ( 𝑅1 ‘ 𝑦 ) ) = 𝑦 ) |
| 28 | 27 | eqcomd | ⊢ ( 𝑦 ∈ ( rank ‘ 𝑥 ) → 𝑦 = ( rank ‘ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 29 | fvex | ⊢ ( 𝑅1 ‘ 𝑦 ) ∈ V | |
| 30 | fveq2 | ⊢ ( 𝑧 = ( 𝑅1 ‘ 𝑦 ) → ( rank ‘ 𝑧 ) = ( rank ‘ ( 𝑅1 ‘ 𝑦 ) ) ) | |
| 31 | 30 | eqeq2d | ⊢ ( 𝑧 = ( 𝑅1 ‘ 𝑦 ) → ( 𝑦 = ( rank ‘ 𝑧 ) ↔ 𝑦 = ( rank ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) |
| 32 | 29 31 | spcev | ⊢ ( 𝑦 = ( rank ‘ ( 𝑅1 ‘ 𝑦 ) ) → ∃ 𝑧 𝑦 = ( rank ‘ 𝑧 ) ) |
| 33 | 28 32 | syl | ⊢ ( 𝑦 ∈ ( rank ‘ 𝑥 ) → ∃ 𝑧 𝑦 = ( rank ‘ 𝑧 ) ) |
| 34 | 33 | ancli | ⊢ ( 𝑦 ∈ ( rank ‘ 𝑥 ) → ( 𝑦 ∈ ( rank ‘ 𝑥 ) ∧ ∃ 𝑧 𝑦 = ( rank ‘ 𝑧 ) ) ) |
| 35 | 19 34 | impbii | ⊢ ( ( 𝑦 ∈ ( rank ‘ 𝑥 ) ∧ ∃ 𝑧 𝑦 = ( rank ‘ 𝑧 ) ) ↔ 𝑦 ∈ ( rank ‘ 𝑥 ) ) |
| 36 | 15 18 35 | 3bitr3i | ⊢ ( ∃ 𝑧 ( ( rank ‘ 𝑧 ) ∈ ( rank ‘ 𝑥 ) ∧ 𝑦 = ( rank ‘ 𝑧 ) ) ↔ 𝑦 ∈ ( rank ‘ 𝑥 ) ) |
| 37 | 14 36 | sylib | ⊢ ( ∃ 𝑧 ( 𝑧 ∈ 𝑥 ∧ 𝑦 = ( rank ‘ 𝑧 ) ) → 𝑦 ∈ ( rank ‘ 𝑥 ) ) |
| 38 | 11 37 | sylbi | ⊢ ( ∃ 𝑧 ∈ 𝑥 𝑦 = ( rank ‘ 𝑧 ) → 𝑦 ∈ ( rank ‘ 𝑥 ) ) |
| 39 | 38 | abssi | ⊢ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑥 𝑦 = ( rank ‘ 𝑧 ) } ⊆ ( rank ‘ 𝑥 ) |
| 40 | 39 | unissi | ⊢ ∪ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑥 𝑦 = ( rank ‘ 𝑧 ) } ⊆ ∪ ( rank ‘ 𝑥 ) |
| 41 | 10 40 | eqsstri | ⊢ ( rank ‘ ∪ 𝑥 ) ⊆ ∪ ( rank ‘ 𝑥 ) |
| 42 | pwuni | ⊢ 𝑥 ⊆ 𝒫 ∪ 𝑥 | |
| 43 | vuniex | ⊢ ∪ 𝑥 ∈ V | |
| 44 | 43 | pwex | ⊢ 𝒫 ∪ 𝑥 ∈ V |
| 45 | 44 | rankss | ⊢ ( 𝑥 ⊆ 𝒫 ∪ 𝑥 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝒫 ∪ 𝑥 ) ) |
| 46 | 42 45 | ax-mp | ⊢ ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝒫 ∪ 𝑥 ) |
| 47 | 43 | rankpw | ⊢ ( rank ‘ 𝒫 ∪ 𝑥 ) = suc ( rank ‘ ∪ 𝑥 ) |
| 48 | 46 47 | sseqtri | ⊢ ( rank ‘ 𝑥 ) ⊆ suc ( rank ‘ ∪ 𝑥 ) |
| 49 | 48 | unissi | ⊢ ∪ ( rank ‘ 𝑥 ) ⊆ ∪ suc ( rank ‘ ∪ 𝑥 ) |
| 50 | rankon | ⊢ ( rank ‘ ∪ 𝑥 ) ∈ On | |
| 51 | 50 | onunisuci | ⊢ ∪ suc ( rank ‘ ∪ 𝑥 ) = ( rank ‘ ∪ 𝑥 ) |
| 52 | 49 51 | sseqtri | ⊢ ∪ ( rank ‘ 𝑥 ) ⊆ ( rank ‘ ∪ 𝑥 ) |
| 53 | 41 52 | eqssi | ⊢ ( rank ‘ ∪ 𝑥 ) = ∪ ( rank ‘ 𝑥 ) |
| 54 | 5 53 | vtoclg | ⊢ ( 𝐴 ∈ V → ( rank ‘ ∪ 𝐴 ) = ∪ ( rank ‘ 𝐴 ) ) |
| 55 | uniexb | ⊢ ( 𝐴 ∈ V ↔ ∪ 𝐴 ∈ V ) | |
| 56 | fvprc | ⊢ ( ¬ ∪ 𝐴 ∈ V → ( rank ‘ ∪ 𝐴 ) = ∅ ) | |
| 57 | 55 56 | sylnbi | ⊢ ( ¬ 𝐴 ∈ V → ( rank ‘ ∪ 𝐴 ) = ∅ ) |
| 58 | uni0 | ⊢ ∪ ∅ = ∅ | |
| 59 | 57 58 | eqtr4di | ⊢ ( ¬ 𝐴 ∈ V → ( rank ‘ ∪ 𝐴 ) = ∪ ∅ ) |
| 60 | fvprc | ⊢ ( ¬ 𝐴 ∈ V → ( rank ‘ 𝐴 ) = ∅ ) | |
| 61 | 60 | unieqd | ⊢ ( ¬ 𝐴 ∈ V → ∪ ( rank ‘ 𝐴 ) = ∪ ∅ ) |
| 62 | 59 61 | eqtr4d | ⊢ ( ¬ 𝐴 ∈ V → ( rank ‘ ∪ 𝐴 ) = ∪ ( rank ‘ 𝐴 ) ) |
| 63 | 54 62 | pm2.61i | ⊢ ( rank ‘ ∪ 𝐴 ) = ∪ ( rank ‘ 𝐴 ) |