This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties of a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iswun | ⊢ ( 𝑈 ∈ 𝑉 → ( 𝑈 ∈ WUni ↔ ( Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑈 ( ∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | treq | ⊢ ( 𝑢 = 𝑈 → ( Tr 𝑢 ↔ Tr 𝑈 ) ) | |
| 2 | neeq1 | ⊢ ( 𝑢 = 𝑈 → ( 𝑢 ≠ ∅ ↔ 𝑈 ≠ ∅ ) ) | |
| 3 | eleq2 | ⊢ ( 𝑢 = 𝑈 → ( ∪ 𝑥 ∈ 𝑢 ↔ ∪ 𝑥 ∈ 𝑈 ) ) | |
| 4 | eleq2 | ⊢ ( 𝑢 = 𝑈 → ( 𝒫 𝑥 ∈ 𝑢 ↔ 𝒫 𝑥 ∈ 𝑈 ) ) | |
| 5 | eleq2 | ⊢ ( 𝑢 = 𝑈 → ( { 𝑥 , 𝑦 } ∈ 𝑢 ↔ { 𝑥 , 𝑦 } ∈ 𝑈 ) ) | |
| 6 | 5 | raleqbi1dv | ⊢ ( 𝑢 = 𝑈 → ( ∀ 𝑦 ∈ 𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 ↔ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) |
| 7 | 3 4 6 | 3anbi123d | ⊢ ( 𝑢 = 𝑈 → ( ( ∪ 𝑥 ∈ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢 ∧ ∀ 𝑦 ∈ 𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 ) ↔ ( ∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) ) |
| 8 | 7 | raleqbi1dv | ⊢ ( 𝑢 = 𝑈 → ( ∀ 𝑥 ∈ 𝑢 ( ∪ 𝑥 ∈ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢 ∧ ∀ 𝑦 ∈ 𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 ) ↔ ∀ 𝑥 ∈ 𝑈 ( ∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) ) |
| 9 | 1 2 8 | 3anbi123d | ⊢ ( 𝑢 = 𝑈 → ( ( Tr 𝑢 ∧ 𝑢 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑢 ( ∪ 𝑥 ∈ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢 ∧ ∀ 𝑦 ∈ 𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 ) ) ↔ ( Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑈 ( ∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) ) ) |
| 10 | df-wun | ⊢ WUni = { 𝑢 ∣ ( Tr 𝑢 ∧ 𝑢 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑢 ( ∪ 𝑥 ∈ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢 ∧ ∀ 𝑦 ∈ 𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 ) ) } | |
| 11 | 9 10 | elab2g | ⊢ ( 𝑈 ∈ 𝑉 → ( 𝑈 ∈ WUni ↔ ( Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑈 ( ∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) ) ) |