This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The weak universes in the cumulative hierarchy are exactly the limit ordinals. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r1wunlim | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑅1 ‘ 𝐴 ) ∈ WUni ↔ Lim 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) → ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) | |
| 2 | 1 | wun0 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) → ∅ ∈ ( 𝑅1 ‘ 𝐴 ) ) |
| 3 | elfvdm | ⊢ ( ∅ ∈ ( 𝑅1 ‘ 𝐴 ) → 𝐴 ∈ dom 𝑅1 ) | |
| 4 | 2 3 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) → 𝐴 ∈ dom 𝑅1 ) |
| 5 | r1fnon | ⊢ 𝑅1 Fn On | |
| 6 | 5 | fndmi | ⊢ dom 𝑅1 = On |
| 7 | 4 6 | eleqtrdi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) → 𝐴 ∈ On ) |
| 8 | eloni | ⊢ ( 𝐴 ∈ On → Ord 𝐴 ) | |
| 9 | 7 8 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) → Ord 𝐴 ) |
| 10 | n0i | ⊢ ( ∅ ∈ ( 𝑅1 ‘ 𝐴 ) → ¬ ( 𝑅1 ‘ 𝐴 ) = ∅ ) | |
| 11 | 2 10 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) → ¬ ( 𝑅1 ‘ 𝐴 ) = ∅ ) |
| 12 | fveq2 | ⊢ ( 𝐴 = ∅ → ( 𝑅1 ‘ 𝐴 ) = ( 𝑅1 ‘ ∅ ) ) | |
| 13 | r10 | ⊢ ( 𝑅1 ‘ ∅ ) = ∅ | |
| 14 | 12 13 | eqtrdi | ⊢ ( 𝐴 = ∅ → ( 𝑅1 ‘ 𝐴 ) = ∅ ) |
| 15 | 11 14 | nsyl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) → ¬ 𝐴 = ∅ ) |
| 16 | onsuc | ⊢ ( 𝐴 ∈ On → suc 𝐴 ∈ On ) | |
| 17 | 7 16 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) → suc 𝐴 ∈ On ) |
| 18 | sucidg | ⊢ ( 𝐴 ∈ On → 𝐴 ∈ suc 𝐴 ) | |
| 19 | 7 18 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) → 𝐴 ∈ suc 𝐴 ) |
| 20 | r1ord | ⊢ ( suc 𝐴 ∈ On → ( 𝐴 ∈ suc 𝐴 → ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ suc 𝐴 ) ) ) | |
| 21 | 17 19 20 | sylc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) → ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ suc 𝐴 ) ) |
| 22 | r1elwf | ⊢ ( ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ suc 𝐴 ) → ( 𝑅1 ‘ 𝐴 ) ∈ ∪ ( 𝑅1 “ On ) ) | |
| 23 | wfelirr | ⊢ ( ( 𝑅1 ‘ 𝐴 ) ∈ ∪ ( 𝑅1 “ On ) → ¬ ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝐴 ) ) | |
| 24 | 21 22 23 | 3syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) → ¬ ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝐴 ) ) |
| 25 | simprr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = suc 𝑥 ) ) → 𝐴 = suc 𝑥 ) | |
| 26 | 25 | fveq2d | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = suc 𝑥 ) ) → ( 𝑅1 ‘ 𝐴 ) = ( 𝑅1 ‘ suc 𝑥 ) ) |
| 27 | r1suc | ⊢ ( 𝑥 ∈ On → ( 𝑅1 ‘ suc 𝑥 ) = 𝒫 ( 𝑅1 ‘ 𝑥 ) ) | |
| 28 | 27 | ad2antrl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = suc 𝑥 ) ) → ( 𝑅1 ‘ suc 𝑥 ) = 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
| 29 | 26 28 | eqtrd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = suc 𝑥 ) ) → ( 𝑅1 ‘ 𝐴 ) = 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
| 30 | simplr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = suc 𝑥 ) ) → ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) | |
| 31 | 7 | adantr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = suc 𝑥 ) ) → 𝐴 ∈ On ) |
| 32 | sucidg | ⊢ ( 𝑥 ∈ On → 𝑥 ∈ suc 𝑥 ) | |
| 33 | 32 | ad2antrl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = suc 𝑥 ) ) → 𝑥 ∈ suc 𝑥 ) |
| 34 | 33 25 | eleqtrrd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = suc 𝑥 ) ) → 𝑥 ∈ 𝐴 ) |
| 35 | r1ord | ⊢ ( 𝐴 ∈ On → ( 𝑥 ∈ 𝐴 → ( 𝑅1 ‘ 𝑥 ) ∈ ( 𝑅1 ‘ 𝐴 ) ) ) | |
| 36 | 31 34 35 | sylc | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = suc 𝑥 ) ) → ( 𝑅1 ‘ 𝑥 ) ∈ ( 𝑅1 ‘ 𝐴 ) ) |
| 37 | 30 36 | wunpw | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = suc 𝑥 ) ) → 𝒫 ( 𝑅1 ‘ 𝑥 ) ∈ ( 𝑅1 ‘ 𝐴 ) ) |
| 38 | 29 37 | eqeltrd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = suc 𝑥 ) ) → ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝐴 ) ) |
| 39 | 38 | rexlimdvaa | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) → ( ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 → ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 40 | 24 39 | mtod | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) → ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) |
| 41 | ioran | ⊢ ( ¬ ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ↔ ( ¬ 𝐴 = ∅ ∧ ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) | |
| 42 | 15 40 41 | sylanbrc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) → ¬ ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) |
| 43 | dflim3 | ⊢ ( Lim 𝐴 ↔ ( Ord 𝐴 ∧ ¬ ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) ) | |
| 44 | 9 42 43 | sylanbrc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) → Lim 𝐴 ) |
| 45 | r1limwun | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ Lim 𝐴 ) → ( 𝑅1 ‘ 𝐴 ) ∈ WUni ) | |
| 46 | 44 45 | impbida | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑅1 ‘ 𝐴 ) ∈ WUni ↔ Lim 𝐴 ) ) |