This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A union is well-founded iff the base set is. (Contributed by Mario Carneiro, 8-Jun-2013) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uniwf | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ↔ ∪ 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1tr | ⊢ Tr ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) | |
| 2 | rankidb | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) | |
| 3 | trss | ⊢ ( Tr ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) → ( 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) → 𝐴 ⊆ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) ) | |
| 4 | 1 2 3 | mpsyl | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝐴 ⊆ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) |
| 5 | rankdmr1 | ⊢ ( rank ‘ 𝐴 ) ∈ dom 𝑅1 | |
| 6 | r1sucg | ⊢ ( ( rank ‘ 𝐴 ) ∈ dom 𝑅1 → ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) = 𝒫 ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) | |
| 7 | 5 6 | ax-mp | ⊢ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) = 𝒫 ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) |
| 8 | 4 7 | sseqtrdi | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝐴 ⊆ 𝒫 ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
| 9 | sspwuni | ⊢ ( 𝐴 ⊆ 𝒫 ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ↔ ∪ 𝐴 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) | |
| 10 | 8 9 | sylib | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ∪ 𝐴 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
| 11 | fvex | ⊢ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ∈ V | |
| 12 | 11 | elpw2 | ⊢ ( ∪ 𝐴 ∈ 𝒫 ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ↔ ∪ 𝐴 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
| 13 | 10 12 | sylibr | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ∪ 𝐴 ∈ 𝒫 ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
| 14 | 13 7 | eleqtrrdi | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ∪ 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) |
| 15 | r1elwf | ⊢ ( ∪ 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) → ∪ 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) | |
| 16 | 14 15 | syl | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ∪ 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |
| 17 | pwwf | ⊢ ( ∪ 𝐴 ∈ ∪ ( 𝑅1 “ On ) ↔ 𝒫 ∪ 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) | |
| 18 | pwuni | ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | |
| 19 | sswf | ⊢ ( ( 𝒫 ∪ 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐴 ⊆ 𝒫 ∪ 𝐴 ) → 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) | |
| 20 | 18 19 | mpan2 | ⊢ ( 𝒫 ∪ 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |
| 21 | 17 20 | sylbi | ⊢ ( ∪ 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |
| 22 | 16 21 | impbii | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ↔ ∪ 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |