This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An unordered pair is well-founded if its elements are. (Contributed by Mario Carneiro, 10-Jun-2013) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prwf | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → { 𝐴 , 𝐵 } ∈ ∪ ( 𝑅1 “ On ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr | ⊢ { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } ) | |
| 2 | snwf | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → { 𝐴 } ∈ ∪ ( 𝑅1 “ On ) ) | |
| 3 | snwf | ⊢ ( 𝐵 ∈ ∪ ( 𝑅1 “ On ) → { 𝐵 } ∈ ∪ ( 𝑅1 “ On ) ) | |
| 4 | unwf | ⊢ ( ( { 𝐴 } ∈ ∪ ( 𝑅1 “ On ) ∧ { 𝐵 } ∈ ∪ ( 𝑅1 “ On ) ) ↔ ( { 𝐴 } ∪ { 𝐵 } ) ∈ ∪ ( 𝑅1 “ On ) ) | |
| 5 | 4 | biimpi | ⊢ ( ( { 𝐴 } ∈ ∪ ( 𝑅1 “ On ) ∧ { 𝐵 } ∈ ∪ ( 𝑅1 “ On ) ) → ( { 𝐴 } ∪ { 𝐵 } ) ∈ ∪ ( 𝑅1 “ On ) ) |
| 6 | 2 3 5 | syl2an | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → ( { 𝐴 } ∪ { 𝐵 } ) ∈ ∪ ( 𝑅1 “ On ) ) |
| 7 | 1 6 | eqeltrid | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → { 𝐴 , 𝐵 } ∈ ∪ ( 𝑅1 “ On ) ) |