This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cumulative hierarchy of a limit ordinal is closed under power set. (Contributed by Raph Levien, 29-May-2004) (Proof shortened by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r1pwcl | ⊢ ( Lim 𝐵 → ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ 𝒫 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1elwf | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) | |
| 2 | elfvdm | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → 𝐵 ∈ dom 𝑅1 ) | |
| 3 | 1 2 | jca | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) ) |
| 4 | 3 | a1i | ⊢ ( Lim 𝐵 → ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) ) ) |
| 5 | r1elwf | ⊢ ( 𝒫 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → 𝒫 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) | |
| 6 | pwwf | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ↔ 𝒫 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) | |
| 7 | 5 6 | sylibr | ⊢ ( 𝒫 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |
| 8 | elfvdm | ⊢ ( 𝒫 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → 𝐵 ∈ dom 𝑅1 ) | |
| 9 | 7 8 | jca | ⊢ ( 𝒫 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) ) |
| 10 | 9 | a1i | ⊢ ( Lim 𝐵 → ( 𝒫 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) ) ) |
| 11 | limsuc | ⊢ ( Lim 𝐵 → ( ( rank ‘ 𝐴 ) ∈ 𝐵 ↔ suc ( rank ‘ 𝐴 ) ∈ 𝐵 ) ) | |
| 12 | 11 | adantr | ⊢ ( ( Lim 𝐵 ∧ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) ) → ( ( rank ‘ 𝐴 ) ∈ 𝐵 ↔ suc ( rank ‘ 𝐴 ) ∈ 𝐵 ) ) |
| 13 | rankpwi | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ 𝒫 𝐴 ) = suc ( rank ‘ 𝐴 ) ) | |
| 14 | 13 | ad2antrl | ⊢ ( ( Lim 𝐵 ∧ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) ) → ( rank ‘ 𝒫 𝐴 ) = suc ( rank ‘ 𝐴 ) ) |
| 15 | 14 | eleq1d | ⊢ ( ( Lim 𝐵 ∧ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) ) → ( ( rank ‘ 𝒫 𝐴 ) ∈ 𝐵 ↔ suc ( rank ‘ 𝐴 ) ∈ 𝐵 ) ) |
| 16 | 12 15 | bitr4d | ⊢ ( ( Lim 𝐵 ∧ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) ) → ( ( rank ‘ 𝐴 ) ∈ 𝐵 ↔ ( rank ‘ 𝒫 𝐴 ) ∈ 𝐵 ) ) |
| 17 | rankr1ag | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ ( rank ‘ 𝐴 ) ∈ 𝐵 ) ) | |
| 18 | 17 | adantl | ⊢ ( ( Lim 𝐵 ∧ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) ) → ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ ( rank ‘ 𝐴 ) ∈ 𝐵 ) ) |
| 19 | rankr1ag | ⊢ ( ( 𝒫 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( 𝒫 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ ( rank ‘ 𝒫 𝐴 ) ∈ 𝐵 ) ) | |
| 20 | 6 19 | sylanb | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( 𝒫 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ ( rank ‘ 𝒫 𝐴 ) ∈ 𝐵 ) ) |
| 21 | 20 | adantl | ⊢ ( ( Lim 𝐵 ∧ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) ) → ( 𝒫 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ ( rank ‘ 𝒫 𝐴 ) ∈ 𝐵 ) ) |
| 22 | 16 18 21 | 3bitr4d | ⊢ ( ( Lim 𝐵 ∧ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) ) → ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ 𝒫 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ) ) |
| 23 | 22 | ex | ⊢ ( Lim 𝐵 → ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ 𝒫 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ) ) ) |
| 24 | 4 10 23 | pm5.21ndd | ⊢ ( Lim 𝐵 → ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ 𝒫 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ) ) |