This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a homeomorphism from a binary product of indexed product topologies to an indexed product topology on the union of the index sets. This is the topological analogue of ( A ^ B ) x. ( A ^ C ) = A ^ ( B + C ) . (Contributed by Mario Carneiro, 8-Feb-2015) (Proof shortened by Mario Carneiro, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ptunhmeo.x | ⊢ 𝑋 = ∪ 𝐾 | |
| ptunhmeo.y | ⊢ 𝑌 = ∪ 𝐿 | ||
| ptunhmeo.j | ⊢ 𝐽 = ( ∏t ‘ 𝐹 ) | ||
| ptunhmeo.k | ⊢ 𝐾 = ( ∏t ‘ ( 𝐹 ↾ 𝐴 ) ) | ||
| ptunhmeo.l | ⊢ 𝐿 = ( ∏t ‘ ( 𝐹 ↾ 𝐵 ) ) | ||
| ptunhmeo.g | ⊢ 𝐺 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( 𝑥 ∪ 𝑦 ) ) | ||
| ptunhmeo.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | ||
| ptunhmeo.f | ⊢ ( 𝜑 → 𝐹 : 𝐶 ⟶ Top ) | ||
| ptunhmeo.u | ⊢ ( 𝜑 → 𝐶 = ( 𝐴 ∪ 𝐵 ) ) | ||
| ptunhmeo.i | ⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) = ∅ ) | ||
| Assertion | ptunhmeo | ⊢ ( 𝜑 → 𝐺 ∈ ( ( 𝐾 ×t 𝐿 ) Homeo 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptunhmeo.x | ⊢ 𝑋 = ∪ 𝐾 | |
| 2 | ptunhmeo.y | ⊢ 𝑌 = ∪ 𝐿 | |
| 3 | ptunhmeo.j | ⊢ 𝐽 = ( ∏t ‘ 𝐹 ) | |
| 4 | ptunhmeo.k | ⊢ 𝐾 = ( ∏t ‘ ( 𝐹 ↾ 𝐴 ) ) | |
| 5 | ptunhmeo.l | ⊢ 𝐿 = ( ∏t ‘ ( 𝐹 ↾ 𝐵 ) ) | |
| 6 | ptunhmeo.g | ⊢ 𝐺 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( 𝑥 ∪ 𝑦 ) ) | |
| 7 | ptunhmeo.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 8 | ptunhmeo.f | ⊢ ( 𝜑 → 𝐹 : 𝐶 ⟶ Top ) | |
| 9 | ptunhmeo.u | ⊢ ( 𝜑 → 𝐶 = ( 𝐴 ∪ 𝐵 ) ) | |
| 10 | ptunhmeo.i | ⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) = ∅ ) | |
| 11 | vex | ⊢ 𝑥 ∈ V | |
| 12 | vex | ⊢ 𝑦 ∈ V | |
| 13 | 11 12 | op1std | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 1st ‘ 𝑧 ) = 𝑥 ) |
| 14 | 11 12 | op2ndd | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 2nd ‘ 𝑧 ) = 𝑦 ) |
| 15 | 13 14 | uneq12d | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) = ( 𝑥 ∪ 𝑦 ) ) |
| 16 | 15 | mpompt | ⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( 𝑥 ∪ 𝑦 ) ) |
| 17 | 6 16 | eqtr4i | ⊢ 𝐺 = ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ) |
| 18 | xp1st | ⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) → ( 1st ‘ 𝑧 ) ∈ 𝑋 ) | |
| 19 | 18 | adantl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → ( 1st ‘ 𝑧 ) ∈ 𝑋 ) |
| 20 | ixpeq2 | ⊢ ( ∀ 𝑛 ∈ 𝐴 ∪ ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) → X 𝑛 ∈ 𝐴 ∪ ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑛 ) = X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) ) | |
| 21 | fvres | ⊢ ( 𝑛 ∈ 𝐴 → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑛 ) = ( 𝐹 ‘ 𝑛 ) ) | |
| 22 | 21 | unieqd | ⊢ ( 𝑛 ∈ 𝐴 → ∪ ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) |
| 23 | 20 22 | mprg | ⊢ X 𝑛 ∈ 𝐴 ∪ ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑛 ) = X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) |
| 24 | ssun1 | ⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) | |
| 25 | 24 9 | sseqtrrid | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) |
| 26 | 7 25 | ssexd | ⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 27 | 8 25 | fssresd | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ Top ) |
| 28 | 4 | ptuni | ⊢ ( ( 𝐴 ∈ V ∧ ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ Top ) → X 𝑛 ∈ 𝐴 ∪ ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑛 ) = ∪ 𝐾 ) |
| 29 | 26 27 28 | syl2anc | ⊢ ( 𝜑 → X 𝑛 ∈ 𝐴 ∪ ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑛 ) = ∪ 𝐾 ) |
| 30 | 23 29 | eqtr3id | ⊢ ( 𝜑 → X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) = ∪ 𝐾 ) |
| 31 | 30 1 | eqtr4di | ⊢ ( 𝜑 → X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) = 𝑋 ) |
| 32 | 31 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) = 𝑋 ) |
| 33 | 19 32 | eleqtrrd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → ( 1st ‘ 𝑧 ) ∈ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) ) |
| 34 | xp2nd | ⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) → ( 2nd ‘ 𝑧 ) ∈ 𝑌 ) | |
| 35 | 34 | adantl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → ( 2nd ‘ 𝑧 ) ∈ 𝑌 ) |
| 36 | 9 | eqcomd | ⊢ ( 𝜑 → ( 𝐴 ∪ 𝐵 ) = 𝐶 ) |
| 37 | uneqdifeq | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( 𝐴 ∪ 𝐵 ) = 𝐶 ↔ ( 𝐶 ∖ 𝐴 ) = 𝐵 ) ) | |
| 38 | 25 10 37 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐴 ∪ 𝐵 ) = 𝐶 ↔ ( 𝐶 ∖ 𝐴 ) = 𝐵 ) ) |
| 39 | 36 38 | mpbid | ⊢ ( 𝜑 → ( 𝐶 ∖ 𝐴 ) = 𝐵 ) |
| 40 | 39 | ixpeq1d | ⊢ ( 𝜑 → X 𝑛 ∈ ( 𝐶 ∖ 𝐴 ) ∪ ( 𝐹 ‘ 𝑛 ) = X 𝑛 ∈ 𝐵 ∪ ( 𝐹 ‘ 𝑛 ) ) |
| 41 | ixpeq2 | ⊢ ( ∀ 𝑛 ∈ 𝐵 ∪ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) → X 𝑛 ∈ 𝐵 ∪ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑛 ) = X 𝑛 ∈ 𝐵 ∪ ( 𝐹 ‘ 𝑛 ) ) | |
| 42 | fvres | ⊢ ( 𝑛 ∈ 𝐵 → ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑛 ) = ( 𝐹 ‘ 𝑛 ) ) | |
| 43 | 42 | unieqd | ⊢ ( 𝑛 ∈ 𝐵 → ∪ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) |
| 44 | 41 43 | mprg | ⊢ X 𝑛 ∈ 𝐵 ∪ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑛 ) = X 𝑛 ∈ 𝐵 ∪ ( 𝐹 ‘ 𝑛 ) |
| 45 | ssun2 | ⊢ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) | |
| 46 | 45 9 | sseqtrrid | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐶 ) |
| 47 | 7 46 | ssexd | ⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 48 | 8 46 | fssresd | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐵 ) : 𝐵 ⟶ Top ) |
| 49 | 5 | ptuni | ⊢ ( ( 𝐵 ∈ V ∧ ( 𝐹 ↾ 𝐵 ) : 𝐵 ⟶ Top ) → X 𝑛 ∈ 𝐵 ∪ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑛 ) = ∪ 𝐿 ) |
| 50 | 47 48 49 | syl2anc | ⊢ ( 𝜑 → X 𝑛 ∈ 𝐵 ∪ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑛 ) = ∪ 𝐿 ) |
| 51 | 44 50 | eqtr3id | ⊢ ( 𝜑 → X 𝑛 ∈ 𝐵 ∪ ( 𝐹 ‘ 𝑛 ) = ∪ 𝐿 ) |
| 52 | 51 2 | eqtr4di | ⊢ ( 𝜑 → X 𝑛 ∈ 𝐵 ∪ ( 𝐹 ‘ 𝑛 ) = 𝑌 ) |
| 53 | 40 52 | eqtrd | ⊢ ( 𝜑 → X 𝑛 ∈ ( 𝐶 ∖ 𝐴 ) ∪ ( 𝐹 ‘ 𝑛 ) = 𝑌 ) |
| 54 | 53 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → X 𝑛 ∈ ( 𝐶 ∖ 𝐴 ) ∪ ( 𝐹 ‘ 𝑛 ) = 𝑌 ) |
| 55 | 35 54 | eleqtrrd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → ( 2nd ‘ 𝑧 ) ∈ X 𝑛 ∈ ( 𝐶 ∖ 𝐴 ) ∪ ( 𝐹 ‘ 𝑛 ) ) |
| 56 | 25 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → 𝐴 ⊆ 𝐶 ) |
| 57 | undifixp | ⊢ ( ( ( 1st ‘ 𝑧 ) ∈ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) ∧ ( 2nd ‘ 𝑧 ) ∈ X 𝑛 ∈ ( 𝐶 ∖ 𝐴 ) ∪ ( 𝐹 ‘ 𝑛 ) ∧ 𝐴 ⊆ 𝐶 ) → ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∈ X 𝑛 ∈ 𝐶 ∪ ( 𝐹 ‘ 𝑛 ) ) | |
| 58 | 33 55 56 57 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∈ X 𝑛 ∈ 𝐶 ∪ ( 𝐹 ‘ 𝑛 ) ) |
| 59 | ixpfn | ⊢ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∈ X 𝑛 ∈ 𝐶 ∪ ( 𝐹 ‘ 𝑛 ) → ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) Fn 𝐶 ) | |
| 60 | 58 59 | syl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) Fn 𝐶 ) |
| 61 | dffn5 | ⊢ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) Fn 𝐶 ↔ ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) = ( 𝑘 ∈ 𝐶 ↦ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ‘ 𝑘 ) ) ) | |
| 62 | 60 61 | sylib | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) = ( 𝑘 ∈ 𝐶 ↦ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ‘ 𝑘 ) ) ) |
| 63 | 62 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ) = ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( 𝑘 ∈ 𝐶 ↦ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ‘ 𝑘 ) ) ) ) |
| 64 | 17 63 | eqtrid | ⊢ ( 𝜑 → 𝐺 = ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( 𝑘 ∈ 𝐶 ↦ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ‘ 𝑘 ) ) ) ) |
| 65 | pttop | ⊢ ( ( 𝐴 ∈ V ∧ ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ Top ) → ( ∏t ‘ ( 𝐹 ↾ 𝐴 ) ) ∈ Top ) | |
| 66 | 26 27 65 | syl2anc | ⊢ ( 𝜑 → ( ∏t ‘ ( 𝐹 ↾ 𝐴 ) ) ∈ Top ) |
| 67 | 4 66 | eqeltrid | ⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 68 | 1 | toptopon | ⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ 𝑋 ) ) |
| 69 | 67 68 | sylib | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑋 ) ) |
| 70 | pttop | ⊢ ( ( 𝐵 ∈ V ∧ ( 𝐹 ↾ 𝐵 ) : 𝐵 ⟶ Top ) → ( ∏t ‘ ( 𝐹 ↾ 𝐵 ) ) ∈ Top ) | |
| 71 | 47 48 70 | syl2anc | ⊢ ( 𝜑 → ( ∏t ‘ ( 𝐹 ↾ 𝐵 ) ) ∈ Top ) |
| 72 | 5 71 | eqeltrid | ⊢ ( 𝜑 → 𝐿 ∈ Top ) |
| 73 | 2 | toptopon | ⊢ ( 𝐿 ∈ Top ↔ 𝐿 ∈ ( TopOn ‘ 𝑌 ) ) |
| 74 | 72 73 | sylib | ⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ 𝑌 ) ) |
| 75 | txtopon | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐾 ×t 𝐿 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) | |
| 76 | 69 74 75 | syl2anc | ⊢ ( 𝜑 → ( 𝐾 ×t 𝐿 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
| 77 | 9 | eleq2d | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐶 ↔ 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) ) ) |
| 78 | 77 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) → 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) ) |
| 79 | elun | ⊢ ( 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) ↔ ( 𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵 ) ) | |
| 80 | 78 79 | sylib | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) → ( 𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵 ) ) |
| 81 | ixpfn | ⊢ ( ( 1st ‘ 𝑧 ) ∈ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) → ( 1st ‘ 𝑧 ) Fn 𝐴 ) | |
| 82 | 33 81 | syl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → ( 1st ‘ 𝑧 ) Fn 𝐴 ) |
| 83 | 82 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → ( 1st ‘ 𝑧 ) Fn 𝐴 ) |
| 84 | 52 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → X 𝑛 ∈ 𝐵 ∪ ( 𝐹 ‘ 𝑛 ) = 𝑌 ) |
| 85 | 35 84 | eleqtrrd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → ( 2nd ‘ 𝑧 ) ∈ X 𝑛 ∈ 𝐵 ∪ ( 𝐹 ‘ 𝑛 ) ) |
| 86 | ixpfn | ⊢ ( ( 2nd ‘ 𝑧 ) ∈ X 𝑛 ∈ 𝐵 ∪ ( 𝐹 ‘ 𝑛 ) → ( 2nd ‘ 𝑧 ) Fn 𝐵 ) | |
| 87 | 85 86 | syl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → ( 2nd ‘ 𝑧 ) Fn 𝐵 ) |
| 88 | 87 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → ( 2nd ‘ 𝑧 ) Fn 𝐵 ) |
| 89 | 10 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → ( 𝐴 ∩ 𝐵 ) = ∅ ) |
| 90 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → 𝑘 ∈ 𝐴 ) | |
| 91 | fvun1 | ⊢ ( ( ( 1st ‘ 𝑧 ) Fn 𝐴 ∧ ( 2nd ‘ 𝑧 ) Fn 𝐵 ∧ ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ 𝑘 ∈ 𝐴 ) ) → ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ‘ 𝑘 ) = ( ( 1st ‘ 𝑧 ) ‘ 𝑘 ) ) | |
| 92 | 83 88 89 90 91 | syl112anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ‘ 𝑘 ) = ( ( 1st ‘ 𝑧 ) ‘ 𝑘 ) ) |
| 93 | 92 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ‘ 𝑘 ) ) = ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( ( 1st ‘ 𝑧 ) ‘ 𝑘 ) ) ) |
| 94 | 76 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐾 ×t 𝐿 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
| 95 | 13 | mpompt | ⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( 1st ‘ 𝑧 ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝑥 ) |
| 96 | 69 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐾 ∈ ( TopOn ‘ 𝑋 ) ) |
| 97 | 74 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐿 ∈ ( TopOn ‘ 𝑌 ) ) |
| 98 | 96 97 | cnmpt1st | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝑥 ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝐾 ) ) |
| 99 | 95 98 | eqeltrid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( 1st ‘ 𝑧 ) ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝐾 ) ) |
| 100 | 26 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐴 ∈ V ) |
| 101 | 27 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ Top ) |
| 102 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ 𝐴 ) | |
| 103 | 1 4 | ptpjcn | ⊢ ( ( 𝐴 ∈ V ∧ ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ Top ∧ 𝑘 ∈ 𝐴 ) → ( 𝑓 ∈ 𝑋 ↦ ( 𝑓 ‘ 𝑘 ) ) ∈ ( 𝐾 Cn ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑘 ) ) ) |
| 104 | 100 101 102 103 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑓 ∈ 𝑋 ↦ ( 𝑓 ‘ 𝑘 ) ) ∈ ( 𝐾 Cn ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑘 ) ) ) |
| 105 | fvres | ⊢ ( 𝑘 ∈ 𝐴 → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 106 | 105 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 107 | 106 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐾 Cn ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑘 ) ) = ( 𝐾 Cn ( 𝐹 ‘ 𝑘 ) ) ) |
| 108 | 104 107 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑓 ∈ 𝑋 ↦ ( 𝑓 ‘ 𝑘 ) ) ∈ ( 𝐾 Cn ( 𝐹 ‘ 𝑘 ) ) ) |
| 109 | fveq1 | ⊢ ( 𝑓 = ( 1st ‘ 𝑧 ) → ( 𝑓 ‘ 𝑘 ) = ( ( 1st ‘ 𝑧 ) ‘ 𝑘 ) ) | |
| 110 | 94 99 96 108 109 | cnmpt11 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( ( 1st ‘ 𝑧 ) ‘ 𝑘 ) ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn ( 𝐹 ‘ 𝑘 ) ) ) |
| 111 | 93 110 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ‘ 𝑘 ) ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn ( 𝐹 ‘ 𝑘 ) ) ) |
| 112 | 82 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → ( 1st ‘ 𝑧 ) Fn 𝐴 ) |
| 113 | 87 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → ( 2nd ‘ 𝑧 ) Fn 𝐵 ) |
| 114 | 10 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → ( 𝐴 ∩ 𝐵 ) = ∅ ) |
| 115 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → 𝑘 ∈ 𝐵 ) | |
| 116 | fvun2 | ⊢ ( ( ( 1st ‘ 𝑧 ) Fn 𝐴 ∧ ( 2nd ‘ 𝑧 ) Fn 𝐵 ∧ ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ 𝑘 ∈ 𝐵 ) ) → ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ‘ 𝑘 ) = ( ( 2nd ‘ 𝑧 ) ‘ 𝑘 ) ) | |
| 117 | 112 113 114 115 116 | syl112anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ‘ 𝑘 ) = ( ( 2nd ‘ 𝑧 ) ‘ 𝑘 ) ) |
| 118 | 117 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ‘ 𝑘 ) ) = ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( ( 2nd ‘ 𝑧 ) ‘ 𝑘 ) ) ) |
| 119 | 76 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝐾 ×t 𝐿 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
| 120 | 14 | mpompt | ⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( 2nd ‘ 𝑧 ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝑦 ) |
| 121 | 69 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → 𝐾 ∈ ( TopOn ‘ 𝑋 ) ) |
| 122 | 74 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → 𝐿 ∈ ( TopOn ‘ 𝑌 ) ) |
| 123 | 121 122 | cnmpt2nd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝑦 ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝐿 ) ) |
| 124 | 120 123 | eqeltrid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( 2nd ‘ 𝑧 ) ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝐿 ) ) |
| 125 | 47 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → 𝐵 ∈ V ) |
| 126 | 48 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝐹 ↾ 𝐵 ) : 𝐵 ⟶ Top ) |
| 127 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → 𝑘 ∈ 𝐵 ) | |
| 128 | 2 5 | ptpjcn | ⊢ ( ( 𝐵 ∈ V ∧ ( 𝐹 ↾ 𝐵 ) : 𝐵 ⟶ Top ∧ 𝑘 ∈ 𝐵 ) → ( 𝑓 ∈ 𝑌 ↦ ( 𝑓 ‘ 𝑘 ) ) ∈ ( 𝐿 Cn ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) ) ) |
| 129 | 125 126 127 128 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝑓 ∈ 𝑌 ↦ ( 𝑓 ‘ 𝑘 ) ) ∈ ( 𝐿 Cn ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) ) ) |
| 130 | fvres | ⊢ ( 𝑘 ∈ 𝐵 → ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 131 | 130 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 132 | 131 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝐿 Cn ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) ) = ( 𝐿 Cn ( 𝐹 ‘ 𝑘 ) ) ) |
| 133 | 129 132 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝑓 ∈ 𝑌 ↦ ( 𝑓 ‘ 𝑘 ) ) ∈ ( 𝐿 Cn ( 𝐹 ‘ 𝑘 ) ) ) |
| 134 | fveq1 | ⊢ ( 𝑓 = ( 2nd ‘ 𝑧 ) → ( 𝑓 ‘ 𝑘 ) = ( ( 2nd ‘ 𝑧 ) ‘ 𝑘 ) ) | |
| 135 | 119 124 122 133 134 | cnmpt11 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( ( 2nd ‘ 𝑧 ) ‘ 𝑘 ) ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn ( 𝐹 ‘ 𝑘 ) ) ) |
| 136 | 118 135 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ‘ 𝑘 ) ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn ( 𝐹 ‘ 𝑘 ) ) ) |
| 137 | 111 136 | jaodan | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵 ) ) → ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ‘ 𝑘 ) ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn ( 𝐹 ‘ 𝑘 ) ) ) |
| 138 | 80 137 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) → ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ‘ 𝑘 ) ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn ( 𝐹 ‘ 𝑘 ) ) ) |
| 139 | 3 76 7 8 138 | ptcn | ⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( 𝑘 ∈ 𝐶 ↦ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ‘ 𝑘 ) ) ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝐽 ) ) |
| 140 | 64 139 | eqeltrd | ⊢ ( 𝜑 → 𝐺 ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝐽 ) ) |
| 141 | 1 2 3 4 5 6 7 8 9 10 | ptuncnv | ⊢ ( 𝜑 → ◡ 𝐺 = ( 𝑧 ∈ ∪ 𝐽 ↦ 〈 ( 𝑧 ↾ 𝐴 ) , ( 𝑧 ↾ 𝐵 ) 〉 ) ) |
| 142 | pttop | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐹 : 𝐶 ⟶ Top ) → ( ∏t ‘ 𝐹 ) ∈ Top ) | |
| 143 | 7 8 142 | syl2anc | ⊢ ( 𝜑 → ( ∏t ‘ 𝐹 ) ∈ Top ) |
| 144 | 3 143 | eqeltrid | ⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 145 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 146 | 145 | toptopon | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 147 | 144 146 | sylib | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 148 | 145 3 4 | ptrescn | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐹 : 𝐶 ⟶ Top ∧ 𝐴 ⊆ 𝐶 ) → ( 𝑧 ∈ ∪ 𝐽 ↦ ( 𝑧 ↾ 𝐴 ) ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 149 | 7 8 25 148 | syl3anc | ⊢ ( 𝜑 → ( 𝑧 ∈ ∪ 𝐽 ↦ ( 𝑧 ↾ 𝐴 ) ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 150 | 145 3 5 | ptrescn | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐹 : 𝐶 ⟶ Top ∧ 𝐵 ⊆ 𝐶 ) → ( 𝑧 ∈ ∪ 𝐽 ↦ ( 𝑧 ↾ 𝐵 ) ) ∈ ( 𝐽 Cn 𝐿 ) ) |
| 151 | 7 8 46 150 | syl3anc | ⊢ ( 𝜑 → ( 𝑧 ∈ ∪ 𝐽 ↦ ( 𝑧 ↾ 𝐵 ) ) ∈ ( 𝐽 Cn 𝐿 ) ) |
| 152 | 147 149 151 | cnmpt1t | ⊢ ( 𝜑 → ( 𝑧 ∈ ∪ 𝐽 ↦ 〈 ( 𝑧 ↾ 𝐴 ) , ( 𝑧 ↾ 𝐵 ) 〉 ) ∈ ( 𝐽 Cn ( 𝐾 ×t 𝐿 ) ) ) |
| 153 | 141 152 | eqeltrd | ⊢ ( 𝜑 → ◡ 𝐺 ∈ ( 𝐽 Cn ( 𝐾 ×t 𝐿 ) ) ) |
| 154 | ishmeo | ⊢ ( 𝐺 ∈ ( ( 𝐾 ×t 𝐿 ) Homeo 𝐽 ) ↔ ( 𝐺 ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝐽 ) ∧ ◡ 𝐺 ∈ ( 𝐽 Cn ( 𝐾 ×t 𝐿 ) ) ) ) | |
| 155 | 140 153 154 | sylanbrc | ⊢ ( 𝜑 → 𝐺 ∈ ( ( 𝐾 ×t 𝐿 ) Homeo 𝐽 ) ) |