This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnmptid.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| cnmpt11.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐽 Cn 𝐾 ) ) | ||
| cnmpt1t.b | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐿 ) ) | ||
| Assertion | cnmpt1t | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ∈ ( 𝐽 Cn ( 𝐾 ×t 𝐿 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmptid.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 2 | cnmpt11.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 3 | cnmpt1t.b | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐿 ) ) | |
| 4 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 5 | mpteq1 | ⊢ ( 𝑋 = ∪ 𝐽 → ( 𝑥 ∈ 𝑋 ↦ 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) 〉 ) = ( 𝑥 ∈ ∪ 𝐽 ↦ 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) 〉 ) ) | |
| 6 | 1 4 5 | 3syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) 〉 ) = ( 𝑥 ∈ ∪ 𝐽 ↦ 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) 〉 ) ) |
| 7 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) | |
| 8 | cntop2 | ⊢ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top ) | |
| 9 | 2 8 | syl | ⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 10 | toptopon2 | ⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) | |
| 11 | 9 10 | sylib | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
| 12 | cnf2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ∪ 𝐾 ) | |
| 13 | 1 11 2 12 | syl3anc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ∪ 𝐾 ) |
| 14 | 13 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ∪ 𝐾 ) |
| 15 | eqid | ⊢ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) | |
| 16 | 15 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ ∪ 𝐾 ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) = 𝐴 ) |
| 17 | 7 14 16 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) = 𝐴 ) |
| 18 | cntop2 | ⊢ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐿 ) → 𝐿 ∈ Top ) | |
| 19 | 3 18 | syl | ⊢ ( 𝜑 → 𝐿 ∈ Top ) |
| 20 | toptopon2 | ⊢ ( 𝐿 ∈ Top ↔ 𝐿 ∈ ( TopOn ‘ ∪ 𝐿 ) ) | |
| 21 | 19 20 | sylib | ⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ ∪ 𝐿 ) ) |
| 22 | cnf2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( TopOn ‘ ∪ 𝐿 ) ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐿 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ ∪ 𝐿 ) | |
| 23 | 1 21 3 22 | syl3anc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ ∪ 𝐿 ) |
| 24 | 23 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ ∪ 𝐿 ) |
| 25 | eqid | ⊢ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) | |
| 26 | 25 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝐵 ∈ ∪ 𝐿 ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 27 | 7 24 26 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 28 | 17 27 | opeq12d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) 〉 = 〈 𝐴 , 𝐵 〉 ) |
| 29 | 28 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) 〉 ) = ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ) |
| 30 | 6 29 | eqtr3d | ⊢ ( 𝜑 → ( 𝑥 ∈ ∪ 𝐽 ↦ 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) 〉 ) = ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ) |
| 31 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 32 | nfcv | ⊢ Ⅎ 𝑦 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) 〉 | |
| 33 | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑦 ) | |
| 34 | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑦 ) | |
| 35 | 33 34 | nfop | ⊢ Ⅎ 𝑥 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑦 ) 〉 |
| 36 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑦 ) ) | |
| 37 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑦 ) ) | |
| 38 | 36 37 | opeq12d | ⊢ ( 𝑥 = 𝑦 → 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) 〉 = 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑦 ) 〉 ) |
| 39 | 32 35 38 | cbvmpt | ⊢ ( 𝑥 ∈ ∪ 𝐽 ↦ 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) 〉 ) = ( 𝑦 ∈ ∪ 𝐽 ↦ 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑦 ) 〉 ) |
| 40 | 31 39 | txcnmpt | ⊢ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐿 ) ) → ( 𝑥 ∈ ∪ 𝐽 ↦ 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) 〉 ) ∈ ( 𝐽 Cn ( 𝐾 ×t 𝐿 ) ) ) |
| 41 | 2 3 40 | syl2anc | ⊢ ( 𝜑 → ( 𝑥 ∈ ∪ 𝐽 ↦ 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) 〉 ) ∈ ( 𝐽 Cn ( 𝐾 ×t 𝐿 ) ) ) |
| 42 | 30 41 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ∈ ( 𝐽 Cn ( 𝐾 ×t 𝐿 ) ) ) |