This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a homeomorphism from a binary product of indexed product topologies to an indexed product topology on the union of the index sets. This is the topological analogue of ( A ^ B ) x. ( A ^ C ) = A ^ ( B + C ) . (Contributed by Mario Carneiro, 8-Feb-2015) (Proof shortened by Mario Carneiro, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ptunhmeo.x | |- X = U. K |
|
| ptunhmeo.y | |- Y = U. L |
||
| ptunhmeo.j | |- J = ( Xt_ ` F ) |
||
| ptunhmeo.k | |- K = ( Xt_ ` ( F |` A ) ) |
||
| ptunhmeo.l | |- L = ( Xt_ ` ( F |` B ) ) |
||
| ptunhmeo.g | |- G = ( x e. X , y e. Y |-> ( x u. y ) ) |
||
| ptunhmeo.c | |- ( ph -> C e. V ) |
||
| ptunhmeo.f | |- ( ph -> F : C --> Top ) |
||
| ptunhmeo.u | |- ( ph -> C = ( A u. B ) ) |
||
| ptunhmeo.i | |- ( ph -> ( A i^i B ) = (/) ) |
||
| Assertion | ptunhmeo | |- ( ph -> G e. ( ( K tX L ) Homeo J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptunhmeo.x | |- X = U. K |
|
| 2 | ptunhmeo.y | |- Y = U. L |
|
| 3 | ptunhmeo.j | |- J = ( Xt_ ` F ) |
|
| 4 | ptunhmeo.k | |- K = ( Xt_ ` ( F |` A ) ) |
|
| 5 | ptunhmeo.l | |- L = ( Xt_ ` ( F |` B ) ) |
|
| 6 | ptunhmeo.g | |- G = ( x e. X , y e. Y |-> ( x u. y ) ) |
|
| 7 | ptunhmeo.c | |- ( ph -> C e. V ) |
|
| 8 | ptunhmeo.f | |- ( ph -> F : C --> Top ) |
|
| 9 | ptunhmeo.u | |- ( ph -> C = ( A u. B ) ) |
|
| 10 | ptunhmeo.i | |- ( ph -> ( A i^i B ) = (/) ) |
|
| 11 | vex | |- x e. _V |
|
| 12 | vex | |- y e. _V |
|
| 13 | 11 12 | op1std | |- ( z = <. x , y >. -> ( 1st ` z ) = x ) |
| 14 | 11 12 | op2ndd | |- ( z = <. x , y >. -> ( 2nd ` z ) = y ) |
| 15 | 13 14 | uneq12d | |- ( z = <. x , y >. -> ( ( 1st ` z ) u. ( 2nd ` z ) ) = ( x u. y ) ) |
| 16 | 15 | mpompt | |- ( z e. ( X X. Y ) |-> ( ( 1st ` z ) u. ( 2nd ` z ) ) ) = ( x e. X , y e. Y |-> ( x u. y ) ) |
| 17 | 6 16 | eqtr4i | |- G = ( z e. ( X X. Y ) |-> ( ( 1st ` z ) u. ( 2nd ` z ) ) ) |
| 18 | xp1st | |- ( z e. ( X X. Y ) -> ( 1st ` z ) e. X ) |
|
| 19 | 18 | adantl | |- ( ( ph /\ z e. ( X X. Y ) ) -> ( 1st ` z ) e. X ) |
| 20 | ixpeq2 | |- ( A. n e. A U. ( ( F |` A ) ` n ) = U. ( F ` n ) -> X_ n e. A U. ( ( F |` A ) ` n ) = X_ n e. A U. ( F ` n ) ) |
|
| 21 | fvres | |- ( n e. A -> ( ( F |` A ) ` n ) = ( F ` n ) ) |
|
| 22 | 21 | unieqd | |- ( n e. A -> U. ( ( F |` A ) ` n ) = U. ( F ` n ) ) |
| 23 | 20 22 | mprg | |- X_ n e. A U. ( ( F |` A ) ` n ) = X_ n e. A U. ( F ` n ) |
| 24 | ssun1 | |- A C_ ( A u. B ) |
|
| 25 | 24 9 | sseqtrrid | |- ( ph -> A C_ C ) |
| 26 | 7 25 | ssexd | |- ( ph -> A e. _V ) |
| 27 | 8 25 | fssresd | |- ( ph -> ( F |` A ) : A --> Top ) |
| 28 | 4 | ptuni | |- ( ( A e. _V /\ ( F |` A ) : A --> Top ) -> X_ n e. A U. ( ( F |` A ) ` n ) = U. K ) |
| 29 | 26 27 28 | syl2anc | |- ( ph -> X_ n e. A U. ( ( F |` A ) ` n ) = U. K ) |
| 30 | 23 29 | eqtr3id | |- ( ph -> X_ n e. A U. ( F ` n ) = U. K ) |
| 31 | 30 1 | eqtr4di | |- ( ph -> X_ n e. A U. ( F ` n ) = X ) |
| 32 | 31 | adantr | |- ( ( ph /\ z e. ( X X. Y ) ) -> X_ n e. A U. ( F ` n ) = X ) |
| 33 | 19 32 | eleqtrrd | |- ( ( ph /\ z e. ( X X. Y ) ) -> ( 1st ` z ) e. X_ n e. A U. ( F ` n ) ) |
| 34 | xp2nd | |- ( z e. ( X X. Y ) -> ( 2nd ` z ) e. Y ) |
|
| 35 | 34 | adantl | |- ( ( ph /\ z e. ( X X. Y ) ) -> ( 2nd ` z ) e. Y ) |
| 36 | 9 | eqcomd | |- ( ph -> ( A u. B ) = C ) |
| 37 | uneqdifeq | |- ( ( A C_ C /\ ( A i^i B ) = (/) ) -> ( ( A u. B ) = C <-> ( C \ A ) = B ) ) |
|
| 38 | 25 10 37 | syl2anc | |- ( ph -> ( ( A u. B ) = C <-> ( C \ A ) = B ) ) |
| 39 | 36 38 | mpbid | |- ( ph -> ( C \ A ) = B ) |
| 40 | 39 | ixpeq1d | |- ( ph -> X_ n e. ( C \ A ) U. ( F ` n ) = X_ n e. B U. ( F ` n ) ) |
| 41 | ixpeq2 | |- ( A. n e. B U. ( ( F |` B ) ` n ) = U. ( F ` n ) -> X_ n e. B U. ( ( F |` B ) ` n ) = X_ n e. B U. ( F ` n ) ) |
|
| 42 | fvres | |- ( n e. B -> ( ( F |` B ) ` n ) = ( F ` n ) ) |
|
| 43 | 42 | unieqd | |- ( n e. B -> U. ( ( F |` B ) ` n ) = U. ( F ` n ) ) |
| 44 | 41 43 | mprg | |- X_ n e. B U. ( ( F |` B ) ` n ) = X_ n e. B U. ( F ` n ) |
| 45 | ssun2 | |- B C_ ( A u. B ) |
|
| 46 | 45 9 | sseqtrrid | |- ( ph -> B C_ C ) |
| 47 | 7 46 | ssexd | |- ( ph -> B e. _V ) |
| 48 | 8 46 | fssresd | |- ( ph -> ( F |` B ) : B --> Top ) |
| 49 | 5 | ptuni | |- ( ( B e. _V /\ ( F |` B ) : B --> Top ) -> X_ n e. B U. ( ( F |` B ) ` n ) = U. L ) |
| 50 | 47 48 49 | syl2anc | |- ( ph -> X_ n e. B U. ( ( F |` B ) ` n ) = U. L ) |
| 51 | 44 50 | eqtr3id | |- ( ph -> X_ n e. B U. ( F ` n ) = U. L ) |
| 52 | 51 2 | eqtr4di | |- ( ph -> X_ n e. B U. ( F ` n ) = Y ) |
| 53 | 40 52 | eqtrd | |- ( ph -> X_ n e. ( C \ A ) U. ( F ` n ) = Y ) |
| 54 | 53 | adantr | |- ( ( ph /\ z e. ( X X. Y ) ) -> X_ n e. ( C \ A ) U. ( F ` n ) = Y ) |
| 55 | 35 54 | eleqtrrd | |- ( ( ph /\ z e. ( X X. Y ) ) -> ( 2nd ` z ) e. X_ n e. ( C \ A ) U. ( F ` n ) ) |
| 56 | 25 | adantr | |- ( ( ph /\ z e. ( X X. Y ) ) -> A C_ C ) |
| 57 | undifixp | |- ( ( ( 1st ` z ) e. X_ n e. A U. ( F ` n ) /\ ( 2nd ` z ) e. X_ n e. ( C \ A ) U. ( F ` n ) /\ A C_ C ) -> ( ( 1st ` z ) u. ( 2nd ` z ) ) e. X_ n e. C U. ( F ` n ) ) |
|
| 58 | 33 55 56 57 | syl3anc | |- ( ( ph /\ z e. ( X X. Y ) ) -> ( ( 1st ` z ) u. ( 2nd ` z ) ) e. X_ n e. C U. ( F ` n ) ) |
| 59 | ixpfn | |- ( ( ( 1st ` z ) u. ( 2nd ` z ) ) e. X_ n e. C U. ( F ` n ) -> ( ( 1st ` z ) u. ( 2nd ` z ) ) Fn C ) |
|
| 60 | 58 59 | syl | |- ( ( ph /\ z e. ( X X. Y ) ) -> ( ( 1st ` z ) u. ( 2nd ` z ) ) Fn C ) |
| 61 | dffn5 | |- ( ( ( 1st ` z ) u. ( 2nd ` z ) ) Fn C <-> ( ( 1st ` z ) u. ( 2nd ` z ) ) = ( k e. C |-> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) ` k ) ) ) |
|
| 62 | 60 61 | sylib | |- ( ( ph /\ z e. ( X X. Y ) ) -> ( ( 1st ` z ) u. ( 2nd ` z ) ) = ( k e. C |-> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) ` k ) ) ) |
| 63 | 62 | mpteq2dva | |- ( ph -> ( z e. ( X X. Y ) |-> ( ( 1st ` z ) u. ( 2nd ` z ) ) ) = ( z e. ( X X. Y ) |-> ( k e. C |-> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) ` k ) ) ) ) |
| 64 | 17 63 | eqtrid | |- ( ph -> G = ( z e. ( X X. Y ) |-> ( k e. C |-> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) ` k ) ) ) ) |
| 65 | pttop | |- ( ( A e. _V /\ ( F |` A ) : A --> Top ) -> ( Xt_ ` ( F |` A ) ) e. Top ) |
|
| 66 | 26 27 65 | syl2anc | |- ( ph -> ( Xt_ ` ( F |` A ) ) e. Top ) |
| 67 | 4 66 | eqeltrid | |- ( ph -> K e. Top ) |
| 68 | 1 | toptopon | |- ( K e. Top <-> K e. ( TopOn ` X ) ) |
| 69 | 67 68 | sylib | |- ( ph -> K e. ( TopOn ` X ) ) |
| 70 | pttop | |- ( ( B e. _V /\ ( F |` B ) : B --> Top ) -> ( Xt_ ` ( F |` B ) ) e. Top ) |
|
| 71 | 47 48 70 | syl2anc | |- ( ph -> ( Xt_ ` ( F |` B ) ) e. Top ) |
| 72 | 5 71 | eqeltrid | |- ( ph -> L e. Top ) |
| 73 | 2 | toptopon | |- ( L e. Top <-> L e. ( TopOn ` Y ) ) |
| 74 | 72 73 | sylib | |- ( ph -> L e. ( TopOn ` Y ) ) |
| 75 | txtopon | |- ( ( K e. ( TopOn ` X ) /\ L e. ( TopOn ` Y ) ) -> ( K tX L ) e. ( TopOn ` ( X X. Y ) ) ) |
|
| 76 | 69 74 75 | syl2anc | |- ( ph -> ( K tX L ) e. ( TopOn ` ( X X. Y ) ) ) |
| 77 | 9 | eleq2d | |- ( ph -> ( k e. C <-> k e. ( A u. B ) ) ) |
| 78 | 77 | biimpa | |- ( ( ph /\ k e. C ) -> k e. ( A u. B ) ) |
| 79 | elun | |- ( k e. ( A u. B ) <-> ( k e. A \/ k e. B ) ) |
|
| 80 | 78 79 | sylib | |- ( ( ph /\ k e. C ) -> ( k e. A \/ k e. B ) ) |
| 81 | ixpfn | |- ( ( 1st ` z ) e. X_ n e. A U. ( F ` n ) -> ( 1st ` z ) Fn A ) |
|
| 82 | 33 81 | syl | |- ( ( ph /\ z e. ( X X. Y ) ) -> ( 1st ` z ) Fn A ) |
| 83 | 82 | adantlr | |- ( ( ( ph /\ k e. A ) /\ z e. ( X X. Y ) ) -> ( 1st ` z ) Fn A ) |
| 84 | 52 | adantr | |- ( ( ph /\ z e. ( X X. Y ) ) -> X_ n e. B U. ( F ` n ) = Y ) |
| 85 | 35 84 | eleqtrrd | |- ( ( ph /\ z e. ( X X. Y ) ) -> ( 2nd ` z ) e. X_ n e. B U. ( F ` n ) ) |
| 86 | ixpfn | |- ( ( 2nd ` z ) e. X_ n e. B U. ( F ` n ) -> ( 2nd ` z ) Fn B ) |
|
| 87 | 85 86 | syl | |- ( ( ph /\ z e. ( X X. Y ) ) -> ( 2nd ` z ) Fn B ) |
| 88 | 87 | adantlr | |- ( ( ( ph /\ k e. A ) /\ z e. ( X X. Y ) ) -> ( 2nd ` z ) Fn B ) |
| 89 | 10 | ad2antrr | |- ( ( ( ph /\ k e. A ) /\ z e. ( X X. Y ) ) -> ( A i^i B ) = (/) ) |
| 90 | simplr | |- ( ( ( ph /\ k e. A ) /\ z e. ( X X. Y ) ) -> k e. A ) |
|
| 91 | fvun1 | |- ( ( ( 1st ` z ) Fn A /\ ( 2nd ` z ) Fn B /\ ( ( A i^i B ) = (/) /\ k e. A ) ) -> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) ` k ) = ( ( 1st ` z ) ` k ) ) |
|
| 92 | 83 88 89 90 91 | syl112anc | |- ( ( ( ph /\ k e. A ) /\ z e. ( X X. Y ) ) -> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) ` k ) = ( ( 1st ` z ) ` k ) ) |
| 93 | 92 | mpteq2dva | |- ( ( ph /\ k e. A ) -> ( z e. ( X X. Y ) |-> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) ` k ) ) = ( z e. ( X X. Y ) |-> ( ( 1st ` z ) ` k ) ) ) |
| 94 | 76 | adantr | |- ( ( ph /\ k e. A ) -> ( K tX L ) e. ( TopOn ` ( X X. Y ) ) ) |
| 95 | 13 | mpompt | |- ( z e. ( X X. Y ) |-> ( 1st ` z ) ) = ( x e. X , y e. Y |-> x ) |
| 96 | 69 | adantr | |- ( ( ph /\ k e. A ) -> K e. ( TopOn ` X ) ) |
| 97 | 74 | adantr | |- ( ( ph /\ k e. A ) -> L e. ( TopOn ` Y ) ) |
| 98 | 96 97 | cnmpt1st | |- ( ( ph /\ k e. A ) -> ( x e. X , y e. Y |-> x ) e. ( ( K tX L ) Cn K ) ) |
| 99 | 95 98 | eqeltrid | |- ( ( ph /\ k e. A ) -> ( z e. ( X X. Y ) |-> ( 1st ` z ) ) e. ( ( K tX L ) Cn K ) ) |
| 100 | 26 | adantr | |- ( ( ph /\ k e. A ) -> A e. _V ) |
| 101 | 27 | adantr | |- ( ( ph /\ k e. A ) -> ( F |` A ) : A --> Top ) |
| 102 | simpr | |- ( ( ph /\ k e. A ) -> k e. A ) |
|
| 103 | 1 4 | ptpjcn | |- ( ( A e. _V /\ ( F |` A ) : A --> Top /\ k e. A ) -> ( f e. X |-> ( f ` k ) ) e. ( K Cn ( ( F |` A ) ` k ) ) ) |
| 104 | 100 101 102 103 | syl3anc | |- ( ( ph /\ k e. A ) -> ( f e. X |-> ( f ` k ) ) e. ( K Cn ( ( F |` A ) ` k ) ) ) |
| 105 | fvres | |- ( k e. A -> ( ( F |` A ) ` k ) = ( F ` k ) ) |
|
| 106 | 105 | adantl | |- ( ( ph /\ k e. A ) -> ( ( F |` A ) ` k ) = ( F ` k ) ) |
| 107 | 106 | oveq2d | |- ( ( ph /\ k e. A ) -> ( K Cn ( ( F |` A ) ` k ) ) = ( K Cn ( F ` k ) ) ) |
| 108 | 104 107 | eleqtrd | |- ( ( ph /\ k e. A ) -> ( f e. X |-> ( f ` k ) ) e. ( K Cn ( F ` k ) ) ) |
| 109 | fveq1 | |- ( f = ( 1st ` z ) -> ( f ` k ) = ( ( 1st ` z ) ` k ) ) |
|
| 110 | 94 99 96 108 109 | cnmpt11 | |- ( ( ph /\ k e. A ) -> ( z e. ( X X. Y ) |-> ( ( 1st ` z ) ` k ) ) e. ( ( K tX L ) Cn ( F ` k ) ) ) |
| 111 | 93 110 | eqeltrd | |- ( ( ph /\ k e. A ) -> ( z e. ( X X. Y ) |-> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) ` k ) ) e. ( ( K tX L ) Cn ( F ` k ) ) ) |
| 112 | 82 | adantlr | |- ( ( ( ph /\ k e. B ) /\ z e. ( X X. Y ) ) -> ( 1st ` z ) Fn A ) |
| 113 | 87 | adantlr | |- ( ( ( ph /\ k e. B ) /\ z e. ( X X. Y ) ) -> ( 2nd ` z ) Fn B ) |
| 114 | 10 | ad2antrr | |- ( ( ( ph /\ k e. B ) /\ z e. ( X X. Y ) ) -> ( A i^i B ) = (/) ) |
| 115 | simplr | |- ( ( ( ph /\ k e. B ) /\ z e. ( X X. Y ) ) -> k e. B ) |
|
| 116 | fvun2 | |- ( ( ( 1st ` z ) Fn A /\ ( 2nd ` z ) Fn B /\ ( ( A i^i B ) = (/) /\ k e. B ) ) -> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) ` k ) = ( ( 2nd ` z ) ` k ) ) |
|
| 117 | 112 113 114 115 116 | syl112anc | |- ( ( ( ph /\ k e. B ) /\ z e. ( X X. Y ) ) -> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) ` k ) = ( ( 2nd ` z ) ` k ) ) |
| 118 | 117 | mpteq2dva | |- ( ( ph /\ k e. B ) -> ( z e. ( X X. Y ) |-> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) ` k ) ) = ( z e. ( X X. Y ) |-> ( ( 2nd ` z ) ` k ) ) ) |
| 119 | 76 | adantr | |- ( ( ph /\ k e. B ) -> ( K tX L ) e. ( TopOn ` ( X X. Y ) ) ) |
| 120 | 14 | mpompt | |- ( z e. ( X X. Y ) |-> ( 2nd ` z ) ) = ( x e. X , y e. Y |-> y ) |
| 121 | 69 | adantr | |- ( ( ph /\ k e. B ) -> K e. ( TopOn ` X ) ) |
| 122 | 74 | adantr | |- ( ( ph /\ k e. B ) -> L e. ( TopOn ` Y ) ) |
| 123 | 121 122 | cnmpt2nd | |- ( ( ph /\ k e. B ) -> ( x e. X , y e. Y |-> y ) e. ( ( K tX L ) Cn L ) ) |
| 124 | 120 123 | eqeltrid | |- ( ( ph /\ k e. B ) -> ( z e. ( X X. Y ) |-> ( 2nd ` z ) ) e. ( ( K tX L ) Cn L ) ) |
| 125 | 47 | adantr | |- ( ( ph /\ k e. B ) -> B e. _V ) |
| 126 | 48 | adantr | |- ( ( ph /\ k e. B ) -> ( F |` B ) : B --> Top ) |
| 127 | simpr | |- ( ( ph /\ k e. B ) -> k e. B ) |
|
| 128 | 2 5 | ptpjcn | |- ( ( B e. _V /\ ( F |` B ) : B --> Top /\ k e. B ) -> ( f e. Y |-> ( f ` k ) ) e. ( L Cn ( ( F |` B ) ` k ) ) ) |
| 129 | 125 126 127 128 | syl3anc | |- ( ( ph /\ k e. B ) -> ( f e. Y |-> ( f ` k ) ) e. ( L Cn ( ( F |` B ) ` k ) ) ) |
| 130 | fvres | |- ( k e. B -> ( ( F |` B ) ` k ) = ( F ` k ) ) |
|
| 131 | 130 | adantl | |- ( ( ph /\ k e. B ) -> ( ( F |` B ) ` k ) = ( F ` k ) ) |
| 132 | 131 | oveq2d | |- ( ( ph /\ k e. B ) -> ( L Cn ( ( F |` B ) ` k ) ) = ( L Cn ( F ` k ) ) ) |
| 133 | 129 132 | eleqtrd | |- ( ( ph /\ k e. B ) -> ( f e. Y |-> ( f ` k ) ) e. ( L Cn ( F ` k ) ) ) |
| 134 | fveq1 | |- ( f = ( 2nd ` z ) -> ( f ` k ) = ( ( 2nd ` z ) ` k ) ) |
|
| 135 | 119 124 122 133 134 | cnmpt11 | |- ( ( ph /\ k e. B ) -> ( z e. ( X X. Y ) |-> ( ( 2nd ` z ) ` k ) ) e. ( ( K tX L ) Cn ( F ` k ) ) ) |
| 136 | 118 135 | eqeltrd | |- ( ( ph /\ k e. B ) -> ( z e. ( X X. Y ) |-> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) ` k ) ) e. ( ( K tX L ) Cn ( F ` k ) ) ) |
| 137 | 111 136 | jaodan | |- ( ( ph /\ ( k e. A \/ k e. B ) ) -> ( z e. ( X X. Y ) |-> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) ` k ) ) e. ( ( K tX L ) Cn ( F ` k ) ) ) |
| 138 | 80 137 | syldan | |- ( ( ph /\ k e. C ) -> ( z e. ( X X. Y ) |-> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) ` k ) ) e. ( ( K tX L ) Cn ( F ` k ) ) ) |
| 139 | 3 76 7 8 138 | ptcn | |- ( ph -> ( z e. ( X X. Y ) |-> ( k e. C |-> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) ` k ) ) ) e. ( ( K tX L ) Cn J ) ) |
| 140 | 64 139 | eqeltrd | |- ( ph -> G e. ( ( K tX L ) Cn J ) ) |
| 141 | 1 2 3 4 5 6 7 8 9 10 | ptuncnv | |- ( ph -> `' G = ( z e. U. J |-> <. ( z |` A ) , ( z |` B ) >. ) ) |
| 142 | pttop | |- ( ( C e. V /\ F : C --> Top ) -> ( Xt_ ` F ) e. Top ) |
|
| 143 | 7 8 142 | syl2anc | |- ( ph -> ( Xt_ ` F ) e. Top ) |
| 144 | 3 143 | eqeltrid | |- ( ph -> J e. Top ) |
| 145 | eqid | |- U. J = U. J |
|
| 146 | 145 | toptopon | |- ( J e. Top <-> J e. ( TopOn ` U. J ) ) |
| 147 | 144 146 | sylib | |- ( ph -> J e. ( TopOn ` U. J ) ) |
| 148 | 145 3 4 | ptrescn | |- ( ( C e. V /\ F : C --> Top /\ A C_ C ) -> ( z e. U. J |-> ( z |` A ) ) e. ( J Cn K ) ) |
| 149 | 7 8 25 148 | syl3anc | |- ( ph -> ( z e. U. J |-> ( z |` A ) ) e. ( J Cn K ) ) |
| 150 | 145 3 5 | ptrescn | |- ( ( C e. V /\ F : C --> Top /\ B C_ C ) -> ( z e. U. J |-> ( z |` B ) ) e. ( J Cn L ) ) |
| 151 | 7 8 46 150 | syl3anc | |- ( ph -> ( z e. U. J |-> ( z |` B ) ) e. ( J Cn L ) ) |
| 152 | 147 149 151 | cnmpt1t | |- ( ph -> ( z e. U. J |-> <. ( z |` A ) , ( z |` B ) >. ) e. ( J Cn ( K tX L ) ) ) |
| 153 | 141 152 | eqeltrd | |- ( ph -> `' G e. ( J Cn ( K tX L ) ) ) |
| 154 | ishmeo | |- ( G e. ( ( K tX L ) Homeo J ) <-> ( G e. ( ( K tX L ) Cn J ) /\ `' G e. ( J Cn ( K tX L ) ) ) ) |
|
| 155 | 140 153 154 | sylanbrc | |- ( ph -> G e. ( ( K tX L ) Homeo J ) ) |