This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Union of two projections of a cartesian product. (Contributed by FL, 7-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | undifixp | ⊢ ( ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 ∧ 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐹 ∪ 𝐺 ) ∈ X 𝑥 ∈ 𝐴 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unexg | ⊢ ( ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 ∧ 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ) → ( 𝐹 ∪ 𝐺 ) ∈ V ) | |
| 2 | 1 | 3adant3 | ⊢ ( ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 ∧ 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐹 ∪ 𝐺 ) ∈ V ) |
| 3 | ixpfn | ⊢ ( 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 → 𝐺 Fn ( 𝐴 ∖ 𝐵 ) ) | |
| 4 | ixpfn | ⊢ ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 → 𝐹 Fn 𝐵 ) | |
| 5 | 3simpa | ⊢ ( ( 𝐺 Fn ( 𝐴 ∖ 𝐵 ) ∧ 𝐹 Fn 𝐵 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐺 Fn ( 𝐴 ∖ 𝐵 ) ∧ 𝐹 Fn 𝐵 ) ) | |
| 6 | 5 | ancomd | ⊢ ( ( 𝐺 Fn ( 𝐴 ∖ 𝐵 ) ∧ 𝐹 Fn 𝐵 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐹 Fn 𝐵 ∧ 𝐺 Fn ( 𝐴 ∖ 𝐵 ) ) ) |
| 7 | disjdif | ⊢ ( 𝐵 ∩ ( 𝐴 ∖ 𝐵 ) ) = ∅ | |
| 8 | fnun | ⊢ ( ( ( 𝐹 Fn 𝐵 ∧ 𝐺 Fn ( 𝐴 ∖ 𝐵 ) ) ∧ ( 𝐵 ∩ ( 𝐴 ∖ 𝐵 ) ) = ∅ ) → ( 𝐹 ∪ 𝐺 ) Fn ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ) | |
| 9 | 6 7 8 | sylancl | ⊢ ( ( 𝐺 Fn ( 𝐴 ∖ 𝐵 ) ∧ 𝐹 Fn 𝐵 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐹 ∪ 𝐺 ) Fn ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ) |
| 10 | undif | ⊢ ( 𝐵 ⊆ 𝐴 ↔ ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) = 𝐴 ) | |
| 11 | 10 | biimpi | ⊢ ( 𝐵 ⊆ 𝐴 → ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) = 𝐴 ) |
| 12 | 11 | eqcomd | ⊢ ( 𝐵 ⊆ 𝐴 → 𝐴 = ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ) |
| 13 | 12 | 3ad2ant3 | ⊢ ( ( 𝐺 Fn ( 𝐴 ∖ 𝐵 ) ∧ 𝐹 Fn 𝐵 ∧ 𝐵 ⊆ 𝐴 ) → 𝐴 = ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ) |
| 14 | 13 | fneq2d | ⊢ ( ( 𝐺 Fn ( 𝐴 ∖ 𝐵 ) ∧ 𝐹 Fn 𝐵 ∧ 𝐵 ⊆ 𝐴 ) → ( ( 𝐹 ∪ 𝐺 ) Fn 𝐴 ↔ ( 𝐹 ∪ 𝐺 ) Fn ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ) ) |
| 15 | 9 14 | mpbird | ⊢ ( ( 𝐺 Fn ( 𝐴 ∖ 𝐵 ) ∧ 𝐹 Fn 𝐵 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐹 ∪ 𝐺 ) Fn 𝐴 ) |
| 16 | 15 | 3exp | ⊢ ( 𝐺 Fn ( 𝐴 ∖ 𝐵 ) → ( 𝐹 Fn 𝐵 → ( 𝐵 ⊆ 𝐴 → ( 𝐹 ∪ 𝐺 ) Fn 𝐴 ) ) ) |
| 17 | 3 4 16 | syl2imc | ⊢ ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 → ( 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 → ( 𝐵 ⊆ 𝐴 → ( 𝐹 ∪ 𝐺 ) Fn 𝐴 ) ) ) |
| 18 | 17 | 3imp | ⊢ ( ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 ∧ 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐹 ∪ 𝐺 ) Fn 𝐴 ) |
| 19 | elixp2 | ⊢ ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 ↔ ( 𝐹 ∈ V ∧ 𝐹 Fn 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) ) | |
| 20 | 19 | simp3bi | ⊢ ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 → ∀ 𝑥 ∈ 𝐵 ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) |
| 21 | fndm | ⊢ ( 𝐺 Fn ( 𝐴 ∖ 𝐵 ) → dom 𝐺 = ( 𝐴 ∖ 𝐵 ) ) | |
| 22 | elndif | ⊢ ( 𝑥 ∈ 𝐵 → ¬ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ) | |
| 23 | eleq2 | ⊢ ( ( 𝐴 ∖ 𝐵 ) = dom 𝐺 → ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↔ 𝑥 ∈ dom 𝐺 ) ) | |
| 24 | 23 | notbid | ⊢ ( ( 𝐴 ∖ 𝐵 ) = dom 𝐺 → ( ¬ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↔ ¬ 𝑥 ∈ dom 𝐺 ) ) |
| 25 | 24 | eqcoms | ⊢ ( dom 𝐺 = ( 𝐴 ∖ 𝐵 ) → ( ¬ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↔ ¬ 𝑥 ∈ dom 𝐺 ) ) |
| 26 | ndmfv | ⊢ ( ¬ 𝑥 ∈ dom 𝐺 → ( 𝐺 ‘ 𝑥 ) = ∅ ) | |
| 27 | 25 26 | biimtrdi | ⊢ ( dom 𝐺 = ( 𝐴 ∖ 𝐵 ) → ( ¬ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) → ( 𝐺 ‘ 𝑥 ) = ∅ ) ) |
| 28 | 21 22 27 | syl2im | ⊢ ( 𝐺 Fn ( 𝐴 ∖ 𝐵 ) → ( 𝑥 ∈ 𝐵 → ( 𝐺 ‘ 𝑥 ) = ∅ ) ) |
| 29 | 28 | ralrimiv | ⊢ ( 𝐺 Fn ( 𝐴 ∖ 𝐵 ) → ∀ 𝑥 ∈ 𝐵 ( 𝐺 ‘ 𝑥 ) = ∅ ) |
| 30 | uneq2 | ⊢ ( ( 𝐺 ‘ 𝑥 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) ∪ ∅ ) ) | |
| 31 | un0 | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∪ ∅ ) = ( 𝐹 ‘ 𝑥 ) | |
| 32 | eqtr | ⊢ ( ( ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) ∪ ∅ ) ∧ ( ( 𝐹 ‘ 𝑥 ) ∪ ∅ ) = ( 𝐹 ‘ 𝑥 ) ) → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 33 | eleq1 | ⊢ ( ( 𝐹 ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ↔ ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) | |
| 34 | 33 | biimpd | ⊢ ( ( 𝐹 ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
| 35 | 34 | eqcoms | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
| 36 | 32 35 | syl | ⊢ ( ( ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) ∪ ∅ ) ∧ ( ( 𝐹 ‘ 𝑥 ) ∪ ∅ ) = ( 𝐹 ‘ 𝑥 ) ) → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
| 37 | 30 31 36 | sylancl | ⊢ ( ( 𝐺 ‘ 𝑥 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
| 38 | 37 | com12 | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 → ( ( 𝐺 ‘ 𝑥 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
| 39 | 38 | ral2imi | ⊢ ( ∀ 𝑥 ∈ 𝐵 ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 → ( ∀ 𝑥 ∈ 𝐵 ( 𝐺 ‘ 𝑥 ) = ∅ → ∀ 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
| 40 | 20 29 39 | syl2imc | ⊢ ( 𝐺 Fn ( 𝐴 ∖ 𝐵 ) → ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 → ∀ 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
| 41 | 3 40 | syl | ⊢ ( 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 → ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 → ∀ 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
| 42 | 41 | impcom | ⊢ ( ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 ∧ 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ) → ∀ 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) |
| 43 | elixp2 | ⊢ ( 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ↔ ( 𝐺 ∈ V ∧ 𝐺 Fn ( 𝐴 ∖ 𝐵 ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 ) ) | |
| 44 | 43 | simp3bi | ⊢ ( 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 → ∀ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 ) |
| 45 | fndm | ⊢ ( 𝐹 Fn 𝐵 → dom 𝐹 = 𝐵 ) | |
| 46 | eldifn | ⊢ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) → ¬ 𝑥 ∈ 𝐵 ) | |
| 47 | eleq2 | ⊢ ( 𝐵 = dom 𝐹 → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ dom 𝐹 ) ) | |
| 48 | 47 | notbid | ⊢ ( 𝐵 = dom 𝐹 → ( ¬ 𝑥 ∈ 𝐵 ↔ ¬ 𝑥 ∈ dom 𝐹 ) ) |
| 49 | ndmfv | ⊢ ( ¬ 𝑥 ∈ dom 𝐹 → ( 𝐹 ‘ 𝑥 ) = ∅ ) | |
| 50 | 48 49 | biimtrdi | ⊢ ( 𝐵 = dom 𝐹 → ( ¬ 𝑥 ∈ 𝐵 → ( 𝐹 ‘ 𝑥 ) = ∅ ) ) |
| 51 | 50 | eqcoms | ⊢ ( dom 𝐹 = 𝐵 → ( ¬ 𝑥 ∈ 𝐵 → ( 𝐹 ‘ 𝑥 ) = ∅ ) ) |
| 52 | 45 46 51 | syl2im | ⊢ ( 𝐹 Fn 𝐵 → ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) → ( 𝐹 ‘ 𝑥 ) = ∅ ) ) |
| 53 | 52 | ralrimiv | ⊢ ( 𝐹 Fn 𝐵 → ∀ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ( 𝐹 ‘ 𝑥 ) = ∅ ) |
| 54 | uneq1 | ⊢ ( ( 𝐹 ‘ 𝑥 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) = ( ∅ ∪ ( 𝐺 ‘ 𝑥 ) ) ) | |
| 55 | uncom | ⊢ ( ∅ ∪ ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐺 ‘ 𝑥 ) ∪ ∅ ) | |
| 56 | eqtr | ⊢ ( ( ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) = ( ∅ ∪ ( 𝐺 ‘ 𝑥 ) ) ∧ ( ∅ ∪ ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐺 ‘ 𝑥 ) ∪ ∅ ) ) → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐺 ‘ 𝑥 ) ∪ ∅ ) ) | |
| 57 | un0 | ⊢ ( ( 𝐺 ‘ 𝑥 ) ∪ ∅ ) = ( 𝐺 ‘ 𝑥 ) | |
| 58 | eqtr | ⊢ ( ( ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐺 ‘ 𝑥 ) ∪ ∅ ) ∧ ( ( 𝐺 ‘ 𝑥 ) ∪ ∅ ) = ( 𝐺 ‘ 𝑥 ) ) → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 59 | eleq1 | ⊢ ( ( 𝐺 ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) → ( ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 ↔ ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) | |
| 60 | 59 | biimpd | ⊢ ( ( 𝐺 ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) → ( ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
| 61 | 60 | eqcoms | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) = ( 𝐺 ‘ 𝑥 ) → ( ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
| 62 | 58 61 | syl | ⊢ ( ( ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐺 ‘ 𝑥 ) ∪ ∅ ) ∧ ( ( 𝐺 ‘ 𝑥 ) ∪ ∅ ) = ( 𝐺 ‘ 𝑥 ) ) → ( ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
| 63 | 56 57 62 | sylancl | ⊢ ( ( ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) = ( ∅ ∪ ( 𝐺 ‘ 𝑥 ) ) ∧ ( ∅ ∪ ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐺 ‘ 𝑥 ) ∪ ∅ ) ) → ( ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
| 64 | 54 55 63 | sylancl | ⊢ ( ( 𝐹 ‘ 𝑥 ) = ∅ → ( ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
| 65 | 64 | com12 | ⊢ ( ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 → ( ( 𝐹 ‘ 𝑥 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
| 66 | 65 | ral2imi | ⊢ ( ∀ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 → ( ∀ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ( 𝐹 ‘ 𝑥 ) = ∅ → ∀ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
| 67 | 44 53 66 | syl2imc | ⊢ ( 𝐹 Fn 𝐵 → ( 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 → ∀ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
| 68 | 4 67 | syl | ⊢ ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 → ( 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 → ∀ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
| 69 | 68 | imp | ⊢ ( ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 ∧ 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ) → ∀ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) |
| 70 | ralunb | ⊢ ( ∀ 𝑥 ∈ ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ↔ ( ∀ 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) | |
| 71 | 42 69 70 | sylanbrc | ⊢ ( ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 ∧ 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ) → ∀ 𝑥 ∈ ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) |
| 72 | 71 | ex | ⊢ ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 → ( 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 → ∀ 𝑥 ∈ ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
| 73 | raleq | ⊢ ( 𝐴 = ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) → ( ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ↔ ∀ 𝑥 ∈ ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) | |
| 74 | 73 | imbi2d | ⊢ ( 𝐴 = ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) → ( ( 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 → ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ↔ ( 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 → ∀ 𝑥 ∈ ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) ) |
| 75 | 72 74 | imbitrrid | ⊢ ( 𝐴 = ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) → ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 → ( 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 → ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) ) |
| 76 | 75 | eqcoms | ⊢ ( ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) = 𝐴 → ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 → ( 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 → ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) ) |
| 77 | 10 76 | sylbi | ⊢ ( 𝐵 ⊆ 𝐴 → ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 → ( 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 → ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) ) |
| 78 | 77 | 3imp231 | ⊢ ( ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 ∧ 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ∧ 𝐵 ⊆ 𝐴 ) → ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) |
| 79 | df-fn | ⊢ ( 𝐺 Fn ( 𝐴 ∖ 𝐵 ) ↔ ( Fun 𝐺 ∧ dom 𝐺 = ( 𝐴 ∖ 𝐵 ) ) ) | |
| 80 | df-fn | ⊢ ( 𝐹 Fn 𝐵 ↔ ( Fun 𝐹 ∧ dom 𝐹 = 𝐵 ) ) | |
| 81 | simpl | ⊢ ( ( Fun 𝐹 ∧ dom 𝐹 = 𝐵 ) → Fun 𝐹 ) | |
| 82 | simpl | ⊢ ( ( Fun 𝐺 ∧ dom 𝐺 = ( 𝐴 ∖ 𝐵 ) ) → Fun 𝐺 ) | |
| 83 | 81 82 | anim12i | ⊢ ( ( ( Fun 𝐹 ∧ dom 𝐹 = 𝐵 ) ∧ ( Fun 𝐺 ∧ dom 𝐺 = ( 𝐴 ∖ 𝐵 ) ) ) → ( Fun 𝐹 ∧ Fun 𝐺 ) ) |
| 84 | 83 | 3adant3 | ⊢ ( ( ( Fun 𝐹 ∧ dom 𝐹 = 𝐵 ) ∧ ( Fun 𝐺 ∧ dom 𝐺 = ( 𝐴 ∖ 𝐵 ) ) ∧ 𝐵 ⊆ 𝐴 ) → ( Fun 𝐹 ∧ Fun 𝐺 ) ) |
| 85 | ineq12 | ⊢ ( ( dom 𝐹 = 𝐵 ∧ dom 𝐺 = ( 𝐴 ∖ 𝐵 ) ) → ( dom 𝐹 ∩ dom 𝐺 ) = ( 𝐵 ∩ ( 𝐴 ∖ 𝐵 ) ) ) | |
| 86 | 85 7 | eqtrdi | ⊢ ( ( dom 𝐹 = 𝐵 ∧ dom 𝐺 = ( 𝐴 ∖ 𝐵 ) ) → ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) |
| 87 | 86 | ad2ant2l | ⊢ ( ( ( Fun 𝐹 ∧ dom 𝐹 = 𝐵 ) ∧ ( Fun 𝐺 ∧ dom 𝐺 = ( 𝐴 ∖ 𝐵 ) ) ) → ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) |
| 88 | 87 | 3adant3 | ⊢ ( ( ( Fun 𝐹 ∧ dom 𝐹 = 𝐵 ) ∧ ( Fun 𝐺 ∧ dom 𝐺 = ( 𝐴 ∖ 𝐵 ) ) ∧ 𝐵 ⊆ 𝐴 ) → ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) |
| 89 | fvun | ⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) → ( ( 𝐹 ∪ 𝐺 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ) | |
| 90 | 84 88 89 | syl2anc | ⊢ ( ( ( Fun 𝐹 ∧ dom 𝐹 = 𝐵 ) ∧ ( Fun 𝐺 ∧ dom 𝐺 = ( 𝐴 ∖ 𝐵 ) ) ∧ 𝐵 ⊆ 𝐴 ) → ( ( 𝐹 ∪ 𝐺 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ) |
| 91 | 90 | eleq1d | ⊢ ( ( ( Fun 𝐹 ∧ dom 𝐹 = 𝐵 ) ∧ ( Fun 𝐺 ∧ dom 𝐺 = ( 𝐴 ∖ 𝐵 ) ) ∧ 𝐵 ⊆ 𝐴 ) → ( ( ( 𝐹 ∪ 𝐺 ) ‘ 𝑥 ) ∈ 𝐶 ↔ ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
| 92 | 91 | ralbidv | ⊢ ( ( ( Fun 𝐹 ∧ dom 𝐹 = 𝐵 ) ∧ ( Fun 𝐺 ∧ dom 𝐺 = ( 𝐴 ∖ 𝐵 ) ) ∧ 𝐵 ⊆ 𝐴 ) → ( ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ∪ 𝐺 ) ‘ 𝑥 ) ∈ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
| 93 | 92 | 3exp | ⊢ ( ( Fun 𝐹 ∧ dom 𝐹 = 𝐵 ) → ( ( Fun 𝐺 ∧ dom 𝐺 = ( 𝐴 ∖ 𝐵 ) ) → ( 𝐵 ⊆ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ∪ 𝐺 ) ‘ 𝑥 ) ∈ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) ) ) |
| 94 | 80 93 | sylbi | ⊢ ( 𝐹 Fn 𝐵 → ( ( Fun 𝐺 ∧ dom 𝐺 = ( 𝐴 ∖ 𝐵 ) ) → ( 𝐵 ⊆ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ∪ 𝐺 ) ‘ 𝑥 ) ∈ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) ) ) |
| 95 | 94 | com12 | ⊢ ( ( Fun 𝐺 ∧ dom 𝐺 = ( 𝐴 ∖ 𝐵 ) ) → ( 𝐹 Fn 𝐵 → ( 𝐵 ⊆ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ∪ 𝐺 ) ‘ 𝑥 ) ∈ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) ) ) |
| 96 | 79 95 | sylbi | ⊢ ( 𝐺 Fn ( 𝐴 ∖ 𝐵 ) → ( 𝐹 Fn 𝐵 → ( 𝐵 ⊆ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ∪ 𝐺 ) ‘ 𝑥 ) ∈ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) ) ) |
| 97 | 3 4 96 | syl2imc | ⊢ ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 → ( 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 → ( 𝐵 ⊆ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ∪ 𝐺 ) ‘ 𝑥 ) ∈ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) ) ) |
| 98 | 97 | 3imp | ⊢ ( ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 ∧ 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ∧ 𝐵 ⊆ 𝐴 ) → ( ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ∪ 𝐺 ) ‘ 𝑥 ) ∈ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
| 99 | 78 98 | mpbird | ⊢ ( ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 ∧ 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ∧ 𝐵 ⊆ 𝐴 ) → ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ∪ 𝐺 ) ‘ 𝑥 ) ∈ 𝐶 ) |
| 100 | elixp2 | ⊢ ( ( 𝐹 ∪ 𝐺 ) ∈ X 𝑥 ∈ 𝐴 𝐶 ↔ ( ( 𝐹 ∪ 𝐺 ) ∈ V ∧ ( 𝐹 ∪ 𝐺 ) Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ∪ 𝐺 ) ‘ 𝑥 ) ∈ 𝐶 ) ) | |
| 101 | 2 18 99 100 | syl3anbrc | ⊢ ( ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 ∧ 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐹 ∪ 𝐺 ) ∈ X 𝑥 ∈ 𝐴 𝐶 ) |