This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The closure of a box in the product topology is the box formed from the closures of the factors. The proof uses the axiom of choice; the last hypothesis is the choice assumption. (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ptcls.2 | ⊢ 𝐽 = ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ) | |
| ptcls.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| ptcls.j | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) | ||
| ptcls.c | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑆 ⊆ 𝑋 ) | ||
| ptclsg.1 | ⊢ ( 𝜑 → ∪ 𝑘 ∈ 𝐴 𝑆 ∈ AC 𝐴 ) | ||
| Assertion | ptclsg | ⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ X 𝑘 ∈ 𝐴 𝑆 ) = X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptcls.2 | ⊢ 𝐽 = ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ) | |
| 2 | ptcls.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 3 | ptcls.j | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 4 | ptcls.c | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑆 ⊆ 𝑋 ) | |
| 5 | ptclsg.1 | ⊢ ( 𝜑 → ∪ 𝑘 ∈ 𝐴 𝑆 ∈ AC 𝐴 ) | |
| 6 | topontop | ⊢ ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) → 𝑅 ∈ Top ) | |
| 7 | 3 6 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑅 ∈ Top ) |
| 8 | toponuni | ⊢ ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝑅 ) | |
| 9 | 3 8 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑋 = ∪ 𝑅 ) |
| 10 | 4 9 | sseqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑆 ⊆ ∪ 𝑅 ) |
| 11 | eqid | ⊢ ∪ 𝑅 = ∪ 𝑅 | |
| 12 | 11 | clscld | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ⊆ ∪ 𝑅 ) → ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ∈ ( Clsd ‘ 𝑅 ) ) |
| 13 | 7 10 12 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ∈ ( Clsd ‘ 𝑅 ) ) |
| 14 | 2 7 13 | ptcldmpt | ⊢ ( 𝜑 → X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ∈ ( Clsd ‘ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ) ) ) |
| 15 | 1 | fveq2i | ⊢ ( Clsd ‘ 𝐽 ) = ( Clsd ‘ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ) ) |
| 16 | 14 15 | eleqtrrdi | ⊢ ( 𝜑 → X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 17 | 11 | sscls | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ⊆ ∪ 𝑅 ) → 𝑆 ⊆ ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) |
| 18 | 7 10 17 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑆 ⊆ ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) |
| 19 | 18 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝑆 ⊆ ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) |
| 20 | ss2ixp | ⊢ ( ∀ 𝑘 ∈ 𝐴 𝑆 ⊆ ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) → X 𝑘 ∈ 𝐴 𝑆 ⊆ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) | |
| 21 | 19 20 | syl | ⊢ ( 𝜑 → X 𝑘 ∈ 𝐴 𝑆 ⊆ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) |
| 22 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 23 | 22 | clsss2 | ⊢ ( ( X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ∈ ( Clsd ‘ 𝐽 ) ∧ X 𝑘 ∈ 𝐴 𝑆 ⊆ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) → ( ( cls ‘ 𝐽 ) ‘ X 𝑘 ∈ 𝐴 𝑆 ) ⊆ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) |
| 24 | 16 21 23 | syl2anc | ⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ X 𝑘 ∈ 𝐴 𝑆 ) ⊆ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) |
| 25 | vex | ⊢ 𝑢 ∈ V | |
| 26 | eqeq1 | ⊢ ( 𝑥 = 𝑢 → ( 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ↔ 𝑢 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) | |
| 27 | 26 | anbi2d | ⊢ ( 𝑥 = 𝑢 → ( ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ↔ ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑢 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) ) |
| 28 | 27 | exbidv | ⊢ ( 𝑥 = 𝑢 → ( ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ↔ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑢 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) ) |
| 29 | 25 28 | elab | ⊢ ( 𝑢 ∈ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ↔ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑢 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) |
| 30 | nffvmpt1 | ⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) | |
| 31 | 30 | nfel2 | ⊢ Ⅎ 𝑘 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) |
| 32 | nfv | ⊢ Ⅎ 𝑦 ( 𝑔 ‘ 𝑘 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑘 ) | |
| 33 | fveq2 | ⊢ ( 𝑦 = 𝑘 → ( 𝑔 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑘 ) ) | |
| 34 | fveq2 | ⊢ ( 𝑦 = 𝑘 → ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑘 ) ) | |
| 35 | 33 34 | eleq12d | ⊢ ( 𝑦 = 𝑘 → ( ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ↔ ( 𝑔 ‘ 𝑘 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑘 ) ) ) |
| 36 | 31 32 35 | cbvralw | ⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ↔ ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑘 ) ) |
| 37 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ 𝐴 ) | |
| 38 | eqid | ⊢ ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) = ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) | |
| 39 | 38 | fvmpt2 | ⊢ ( ( 𝑘 ∈ 𝐴 ∧ 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑘 ) = 𝑅 ) |
| 40 | 37 3 39 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑘 ) = 𝑅 ) |
| 41 | 40 | eleq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑔 ‘ 𝑘 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑘 ) ↔ ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ) ) |
| 42 | 41 | ralbidva | ⊢ ( 𝜑 → ( ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑘 ) ↔ ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ) ) |
| 43 | 36 42 | bitrid | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ↔ ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ) ) |
| 44 | 43 | anbi2d | ⊢ ( 𝜑 → ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ↔ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ) ) ) |
| 45 | 44 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) → ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ↔ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ) ) ) |
| 46 | 45 | biimpa | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ) → ( 𝑔 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ) ) |
| 47 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) ∧ ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ) ∧ 𝑓 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) → ∪ 𝑘 ∈ 𝐴 𝑆 ∈ AC 𝐴 ) |
| 48 | simpll | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) ∧ ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ) ∧ 𝑓 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) → 𝜑 ) | |
| 49 | vex | ⊢ 𝑓 ∈ V | |
| 50 | 49 | elixp | ⊢ ( 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ↔ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) ) |
| 51 | 50 | simprbi | ⊢ ( 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) → ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) |
| 52 | 51 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) ∧ ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ) ∧ 𝑓 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) → ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) |
| 53 | 11 | clsndisj | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ⊆ ∪ 𝑅 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) ∧ ( ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑔 ‘ 𝑘 ) ) ) → ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ≠ ∅ ) |
| 54 | 53 | ex | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ⊆ ∪ 𝑅 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) → ( ( ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑔 ‘ 𝑘 ) ) → ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ≠ ∅ ) ) |
| 55 | 54 | 3expia | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ⊆ ∪ 𝑅 ) → ( ( 𝑓 ‘ 𝑘 ) ∈ ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) → ( ( ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑔 ‘ 𝑘 ) ) → ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 56 | 7 10 55 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑓 ‘ 𝑘 ) ∈ ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) → ( ( ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑔 ‘ 𝑘 ) ) → ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 57 | 56 | ralimdva | ⊢ ( 𝜑 → ( ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) → ∀ 𝑘 ∈ 𝐴 ( ( ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑔 ‘ 𝑘 ) ) → ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 58 | 48 52 57 | sylc | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) ∧ ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ) ∧ 𝑓 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) → ∀ 𝑘 ∈ 𝐴 ( ( ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑔 ‘ 𝑘 ) ) → ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ≠ ∅ ) ) |
| 59 | simprlr | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) ∧ ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ) ∧ 𝑓 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) → ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ) | |
| 60 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) ∧ ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ) ∧ 𝑓 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) → 𝑓 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) | |
| 61 | 33 | cbvixpv | ⊢ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) = X 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) |
| 62 | 60 61 | eleqtrdi | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) ∧ ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ) ∧ 𝑓 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) → 𝑓 ∈ X 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ) |
| 63 | 49 | elixp | ⊢ ( 𝑓 ∈ X 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ↔ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑔 ‘ 𝑘 ) ) ) |
| 64 | 63 | simprbi | ⊢ ( 𝑓 ∈ X 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) → ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑔 ‘ 𝑘 ) ) |
| 65 | 62 64 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) ∧ ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ) ∧ 𝑓 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) → ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑔 ‘ 𝑘 ) ) |
| 66 | r19.26 | ⊢ ( ∀ 𝑘 ∈ 𝐴 ( ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑔 ‘ 𝑘 ) ) ↔ ( ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑔 ‘ 𝑘 ) ) ) | |
| 67 | 59 65 66 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) ∧ ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ) ∧ 𝑓 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) → ∀ 𝑘 ∈ 𝐴 ( ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑔 ‘ 𝑘 ) ) ) |
| 68 | ralim | ⊢ ( ∀ 𝑘 ∈ 𝐴 ( ( ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑔 ‘ 𝑘 ) ) → ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ≠ ∅ ) → ( ∀ 𝑘 ∈ 𝐴 ( ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑔 ‘ 𝑘 ) ) → ∀ 𝑘 ∈ 𝐴 ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ≠ ∅ ) ) | |
| 69 | 58 67 68 | sylc | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) ∧ ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ) ∧ 𝑓 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) → ∀ 𝑘 ∈ 𝐴 ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ≠ ∅ ) |
| 70 | rabn0 | ⊢ ( { 𝑧 ∈ ∪ 𝑘 ∈ 𝐴 𝑆 ∣ 𝑧 ∈ ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) } ≠ ∅ ↔ ∃ 𝑧 ∈ ∪ 𝑘 ∈ 𝐴 𝑆 𝑧 ∈ ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ) | |
| 71 | dfin5 | ⊢ ( ∪ 𝑘 ∈ 𝐴 𝑆 ∩ ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ) = { 𝑧 ∈ ∪ 𝑘 ∈ 𝐴 𝑆 ∣ 𝑧 ∈ ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) } | |
| 72 | inss2 | ⊢ ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ⊆ 𝑆 | |
| 73 | ssiun2 | ⊢ ( 𝑘 ∈ 𝐴 → 𝑆 ⊆ ∪ 𝑘 ∈ 𝐴 𝑆 ) | |
| 74 | 72 73 | sstrid | ⊢ ( 𝑘 ∈ 𝐴 → ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ⊆ ∪ 𝑘 ∈ 𝐴 𝑆 ) |
| 75 | sseqin2 | ⊢ ( ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ⊆ ∪ 𝑘 ∈ 𝐴 𝑆 ↔ ( ∪ 𝑘 ∈ 𝐴 𝑆 ∩ ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ) = ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ) | |
| 76 | 74 75 | sylib | ⊢ ( 𝑘 ∈ 𝐴 → ( ∪ 𝑘 ∈ 𝐴 𝑆 ∩ ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ) = ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ) |
| 77 | 71 76 | eqtr3id | ⊢ ( 𝑘 ∈ 𝐴 → { 𝑧 ∈ ∪ 𝑘 ∈ 𝐴 𝑆 ∣ 𝑧 ∈ ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) } = ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ) |
| 78 | 77 | neeq1d | ⊢ ( 𝑘 ∈ 𝐴 → ( { 𝑧 ∈ ∪ 𝑘 ∈ 𝐴 𝑆 ∣ 𝑧 ∈ ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) } ≠ ∅ ↔ ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ≠ ∅ ) ) |
| 79 | 70 78 | bitr3id | ⊢ ( 𝑘 ∈ 𝐴 → ( ∃ 𝑧 ∈ ∪ 𝑘 ∈ 𝐴 𝑆 𝑧 ∈ ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ↔ ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ≠ ∅ ) ) |
| 80 | 79 | ralbiia | ⊢ ( ∀ 𝑘 ∈ 𝐴 ∃ 𝑧 ∈ ∪ 𝑘 ∈ 𝐴 𝑆 𝑧 ∈ ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ↔ ∀ 𝑘 ∈ 𝐴 ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ≠ ∅ ) |
| 81 | 69 80 | sylibr | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) ∧ ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ) ∧ 𝑓 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) → ∀ 𝑘 ∈ 𝐴 ∃ 𝑧 ∈ ∪ 𝑘 ∈ 𝐴 𝑆 𝑧 ∈ ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ) |
| 82 | nfv | ⊢ Ⅎ 𝑦 ∃ 𝑧 ∈ ∪ 𝑘 ∈ 𝐴 𝑆 𝑧 ∈ ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) | |
| 83 | nfiu1 | ⊢ Ⅎ 𝑘 ∪ 𝑘 ∈ 𝐴 𝑆 | |
| 84 | nfcv | ⊢ Ⅎ 𝑘 ( 𝑔 ‘ 𝑦 ) | |
| 85 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑦 / 𝑘 ⦌ 𝑆 | |
| 86 | 84 85 | nfin | ⊢ Ⅎ 𝑘 ( ( 𝑔 ‘ 𝑦 ) ∩ ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) |
| 87 | 86 | nfel2 | ⊢ Ⅎ 𝑘 𝑧 ∈ ( ( 𝑔 ‘ 𝑦 ) ∩ ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) |
| 88 | 83 87 | nfrexw | ⊢ Ⅎ 𝑘 ∃ 𝑧 ∈ ∪ 𝑘 ∈ 𝐴 𝑆 𝑧 ∈ ( ( 𝑔 ‘ 𝑦 ) ∩ ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) |
| 89 | fveq2 | ⊢ ( 𝑘 = 𝑦 → ( 𝑔 ‘ 𝑘 ) = ( 𝑔 ‘ 𝑦 ) ) | |
| 90 | csbeq1a | ⊢ ( 𝑘 = 𝑦 → 𝑆 = ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) | |
| 91 | 89 90 | ineq12d | ⊢ ( 𝑘 = 𝑦 → ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) = ( ( 𝑔 ‘ 𝑦 ) ∩ ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) ) |
| 92 | 91 | eleq2d | ⊢ ( 𝑘 = 𝑦 → ( 𝑧 ∈ ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ↔ 𝑧 ∈ ( ( 𝑔 ‘ 𝑦 ) ∩ ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) ) ) |
| 93 | 92 | rexbidv | ⊢ ( 𝑘 = 𝑦 → ( ∃ 𝑧 ∈ ∪ 𝑘 ∈ 𝐴 𝑆 𝑧 ∈ ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ↔ ∃ 𝑧 ∈ ∪ 𝑘 ∈ 𝐴 𝑆 𝑧 ∈ ( ( 𝑔 ‘ 𝑦 ) ∩ ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) ) ) |
| 94 | 82 88 93 | cbvralw | ⊢ ( ∀ 𝑘 ∈ 𝐴 ∃ 𝑧 ∈ ∪ 𝑘 ∈ 𝐴 𝑆 𝑧 ∈ ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ↔ ∀ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ ∪ 𝑘 ∈ 𝐴 𝑆 𝑧 ∈ ( ( 𝑔 ‘ 𝑦 ) ∩ ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) ) |
| 95 | 81 94 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) ∧ ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ) ∧ 𝑓 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) → ∀ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ ∪ 𝑘 ∈ 𝐴 𝑆 𝑧 ∈ ( ( 𝑔 ‘ 𝑦 ) ∩ ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) ) |
| 96 | eleq1 | ⊢ ( 𝑧 = ( ℎ ‘ 𝑦 ) → ( 𝑧 ∈ ( ( 𝑔 ‘ 𝑦 ) ∩ ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) ↔ ( ℎ ‘ 𝑦 ) ∈ ( ( 𝑔 ‘ 𝑦 ) ∩ ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) ) ) | |
| 97 | 96 | acni3 | ⊢ ( ( ∪ 𝑘 ∈ 𝐴 𝑆 ∈ AC 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ ∪ 𝑘 ∈ 𝐴 𝑆 𝑧 ∈ ( ( 𝑔 ‘ 𝑦 ) ∩ ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) ) → ∃ ℎ ( ℎ : 𝐴 ⟶ ∪ 𝑘 ∈ 𝐴 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( ( 𝑔 ‘ 𝑦 ) ∩ ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) ) ) |
| 98 | 47 95 97 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) ∧ ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ) ∧ 𝑓 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) → ∃ ℎ ( ℎ : 𝐴 ⟶ ∪ 𝑘 ∈ 𝐴 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( ( 𝑔 ‘ 𝑦 ) ∩ ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) ) ) |
| 99 | ffn | ⊢ ( ℎ : 𝐴 ⟶ ∪ 𝑘 ∈ 𝐴 𝑆 → ℎ Fn 𝐴 ) | |
| 100 | nfv | ⊢ Ⅎ 𝑦 ( ℎ ‘ 𝑘 ) ∈ ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) | |
| 101 | 86 | nfel2 | ⊢ Ⅎ 𝑘 ( ℎ ‘ 𝑦 ) ∈ ( ( 𝑔 ‘ 𝑦 ) ∩ ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) |
| 102 | fveq2 | ⊢ ( 𝑘 = 𝑦 → ( ℎ ‘ 𝑘 ) = ( ℎ ‘ 𝑦 ) ) | |
| 103 | 102 91 | eleq12d | ⊢ ( 𝑘 = 𝑦 → ( ( ℎ ‘ 𝑘 ) ∈ ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ↔ ( ℎ ‘ 𝑦 ) ∈ ( ( 𝑔 ‘ 𝑦 ) ∩ ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) ) ) |
| 104 | 100 101 103 | cbvralw | ⊢ ( ∀ 𝑘 ∈ 𝐴 ( ℎ ‘ 𝑘 ) ∈ ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ↔ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( ( 𝑔 ‘ 𝑦 ) ∩ ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) ) |
| 105 | ne0i | ⊢ ( ℎ ∈ X 𝑘 ∈ 𝐴 ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) → X 𝑘 ∈ 𝐴 ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ≠ ∅ ) | |
| 106 | vex | ⊢ ℎ ∈ V | |
| 107 | 106 | elixp | ⊢ ( ℎ ∈ X 𝑘 ∈ 𝐴 ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ↔ ( ℎ Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( ℎ ‘ 𝑘 ) ∈ ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ) ) |
| 108 | ixpin | ⊢ X 𝑘 ∈ 𝐴 ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) = ( X 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) | |
| 109 | 61 | ineq1i | ⊢ ( X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) = ( X 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) |
| 110 | 108 109 | eqtr4i | ⊢ X 𝑘 ∈ 𝐴 ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) = ( X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) |
| 111 | 110 | neeq1i | ⊢ ( X 𝑘 ∈ 𝐴 ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ≠ ∅ ↔ ( X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ≠ ∅ ) |
| 112 | 105 107 111 | 3imtr3i | ⊢ ( ( ℎ Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( ℎ ‘ 𝑘 ) ∈ ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ) → ( X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ≠ ∅ ) |
| 113 | 104 112 | sylan2br | ⊢ ( ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( ( 𝑔 ‘ 𝑦 ) ∩ ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) ) → ( X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ≠ ∅ ) |
| 114 | 99 113 | sylan | ⊢ ( ( ℎ : 𝐴 ⟶ ∪ 𝑘 ∈ 𝐴 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( ( 𝑔 ‘ 𝑦 ) ∩ ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) ) → ( X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ≠ ∅ ) |
| 115 | 114 | exlimiv | ⊢ ( ∃ ℎ ( ℎ : 𝐴 ⟶ ∪ 𝑘 ∈ 𝐴 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( ( 𝑔 ‘ 𝑦 ) ∩ ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) ) → ( X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ≠ ∅ ) |
| 116 | 98 115 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) ∧ ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ) ∧ 𝑓 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) → ( X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ≠ ∅ ) |
| 117 | 116 | expr | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ) ) → ( 𝑓 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) → ( X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ≠ ∅ ) ) |
| 118 | 46 117 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ) → ( 𝑓 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) → ( X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ≠ ∅ ) ) |
| 119 | 118 | 3adantr3 | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ) → ( 𝑓 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) → ( X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ≠ ∅ ) ) |
| 120 | eleq2 | ⊢ ( 𝑢 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) → ( 𝑓 ∈ 𝑢 ↔ 𝑓 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) | |
| 121 | ineq1 | ⊢ ( 𝑢 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) → ( 𝑢 ∩ X 𝑘 ∈ 𝐴 𝑆 ) = ( X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) | |
| 122 | 121 | neeq1d | ⊢ ( 𝑢 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) → ( ( 𝑢 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ≠ ∅ ↔ ( X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ≠ ∅ ) ) |
| 123 | 120 122 | imbi12d | ⊢ ( 𝑢 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) → ( ( 𝑓 ∈ 𝑢 → ( 𝑢 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ≠ ∅ ) ↔ ( 𝑓 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) → ( X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ≠ ∅ ) ) ) |
| 124 | 119 123 | syl5ibrcom | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ) → ( 𝑢 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) → ( 𝑓 ∈ 𝑢 → ( 𝑢 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ≠ ∅ ) ) ) |
| 125 | 124 | expimpd | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) → ( ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑢 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) → ( 𝑓 ∈ 𝑢 → ( 𝑢 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ≠ ∅ ) ) ) |
| 126 | 125 | exlimdv | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) → ( ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑢 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) → ( 𝑓 ∈ 𝑢 → ( 𝑢 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ≠ ∅ ) ) ) |
| 127 | 29 126 | biimtrid | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) → ( 𝑢 ∈ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } → ( 𝑓 ∈ 𝑢 → ( 𝑢 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ≠ ∅ ) ) ) |
| 128 | 127 | ralrimiv | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) → ∀ 𝑢 ∈ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ( 𝑓 ∈ 𝑢 → ( 𝑢 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ≠ ∅ ) ) |
| 129 | 7 | fmpttd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) : 𝐴 ⟶ Top ) |
| 130 | 129 | ffnd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) Fn 𝐴 ) |
| 131 | eqid | ⊢ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } | |
| 132 | 131 | ptval | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) Fn 𝐴 ) → ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ) = ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) |
| 133 | 2 130 132 | syl2anc | ⊢ ( 𝜑 → ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ) = ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) |
| 134 | 1 133 | eqtrid | ⊢ ( 𝜑 → 𝐽 = ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) |
| 135 | 134 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) → 𝐽 = ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) |
| 136 | 3 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) |
| 137 | 1 | pttopon | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑘 ∈ 𝐴 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) → 𝐽 ∈ ( TopOn ‘ X 𝑘 ∈ 𝐴 𝑋 ) ) |
| 138 | 2 136 137 | syl2anc | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ X 𝑘 ∈ 𝐴 𝑋 ) ) |
| 139 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ X 𝑘 ∈ 𝐴 𝑋 ) → X 𝑘 ∈ 𝐴 𝑋 = ∪ 𝐽 ) | |
| 140 | 138 139 | syl | ⊢ ( 𝜑 → X 𝑘 ∈ 𝐴 𝑋 = ∪ 𝐽 ) |
| 141 | 140 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) → X 𝑘 ∈ 𝐴 𝑋 = ∪ 𝐽 ) |
| 142 | 131 | ptbas | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) : 𝐴 ⟶ Top ) → { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ∈ TopBases ) |
| 143 | 2 129 142 | syl2anc | ⊢ ( 𝜑 → { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ∈ TopBases ) |
| 144 | 143 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) → { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ∈ TopBases ) |
| 145 | 4 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝑆 ⊆ 𝑋 ) |
| 146 | ss2ixp | ⊢ ( ∀ 𝑘 ∈ 𝐴 𝑆 ⊆ 𝑋 → X 𝑘 ∈ 𝐴 𝑆 ⊆ X 𝑘 ∈ 𝐴 𝑋 ) | |
| 147 | 145 146 | syl | ⊢ ( 𝜑 → X 𝑘 ∈ 𝐴 𝑆 ⊆ X 𝑘 ∈ 𝐴 𝑋 ) |
| 148 | 147 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) → X 𝑘 ∈ 𝐴 𝑆 ⊆ X 𝑘 ∈ 𝐴 𝑋 ) |
| 149 | 11 | clsss3 | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ⊆ ∪ 𝑅 ) → ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ⊆ ∪ 𝑅 ) |
| 150 | 7 10 149 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ⊆ ∪ 𝑅 ) |
| 151 | 150 9 | sseqtrrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ⊆ 𝑋 ) |
| 152 | 151 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ⊆ 𝑋 ) |
| 153 | ss2ixp | ⊢ ( ∀ 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ⊆ 𝑋 → X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ⊆ X 𝑘 ∈ 𝐴 𝑋 ) | |
| 154 | 152 153 | syl | ⊢ ( 𝜑 → X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ⊆ X 𝑘 ∈ 𝐴 𝑋 ) |
| 155 | 154 | sselda | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) → 𝑓 ∈ X 𝑘 ∈ 𝐴 𝑋 ) |
| 156 | 135 141 144 148 155 | elcls3 | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) → ( 𝑓 ∈ ( ( cls ‘ 𝐽 ) ‘ X 𝑘 ∈ 𝐴 𝑆 ) ↔ ∀ 𝑢 ∈ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ( 𝑓 ∈ 𝑢 → ( 𝑢 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ≠ ∅ ) ) ) |
| 157 | 128 156 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) → 𝑓 ∈ ( ( cls ‘ 𝐽 ) ‘ X 𝑘 ∈ 𝐴 𝑆 ) ) |
| 158 | 24 157 | eqelssd | ⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ X 𝑘 ∈ 𝐴 𝑆 ) = X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) |