This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set for the product topology. (Contributed by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ptunimpt.j | ⊢ 𝐽 = ( ∏t ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) ) | |
| Assertion | pttopon | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐾 ∈ ( TopOn ‘ 𝐵 ) ) → 𝐽 ∈ ( TopOn ‘ X 𝑥 ∈ 𝐴 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptunimpt.j | ⊢ 𝐽 = ( ∏t ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) ) | |
| 2 | topontop | ⊢ ( 𝐾 ∈ ( TopOn ‘ 𝐵 ) → 𝐾 ∈ Top ) | |
| 3 | 2 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐾 ∈ ( TopOn ‘ 𝐵 ) → ∀ 𝑥 ∈ 𝐴 𝐾 ∈ Top ) |
| 4 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) | |
| 5 | 4 | fmpt | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐾 ∈ Top ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) : 𝐴 ⟶ Top ) |
| 6 | 3 5 | sylib | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐾 ∈ ( TopOn ‘ 𝐵 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) : 𝐴 ⟶ Top ) |
| 7 | pttop | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) : 𝐴 ⟶ Top ) → ( ∏t ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) ) ∈ Top ) | |
| 8 | 1 7 | eqeltrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) : 𝐴 ⟶ Top ) → 𝐽 ∈ Top ) |
| 9 | 6 8 | sylan2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐾 ∈ ( TopOn ‘ 𝐵 ) ) → 𝐽 ∈ Top ) |
| 10 | toponuni | ⊢ ( 𝐾 ∈ ( TopOn ‘ 𝐵 ) → 𝐵 = ∪ 𝐾 ) | |
| 11 | 10 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐾 ∈ ( TopOn ‘ 𝐵 ) → ∀ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝐾 ) |
| 12 | ixpeq2 | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝐾 → X 𝑥 ∈ 𝐴 𝐵 = X 𝑥 ∈ 𝐴 ∪ 𝐾 ) | |
| 13 | 11 12 | syl | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐾 ∈ ( TopOn ‘ 𝐵 ) → X 𝑥 ∈ 𝐴 𝐵 = X 𝑥 ∈ 𝐴 ∪ 𝐾 ) |
| 14 | 13 | adantl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐾 ∈ ( TopOn ‘ 𝐵 ) ) → X 𝑥 ∈ 𝐴 𝐵 = X 𝑥 ∈ 𝐴 ∪ 𝐾 ) |
| 15 | 1 | ptunimpt | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐾 ∈ Top ) → X 𝑥 ∈ 𝐴 ∪ 𝐾 = ∪ 𝐽 ) |
| 16 | 3 15 | sylan2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐾 ∈ ( TopOn ‘ 𝐵 ) ) → X 𝑥 ∈ 𝐴 ∪ 𝐾 = ∪ 𝐽 ) |
| 17 | 14 16 | eqtrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐾 ∈ ( TopOn ‘ 𝐵 ) ) → X 𝑥 ∈ 𝐴 𝐵 = ∪ 𝐽 ) |
| 18 | istopon | ⊢ ( 𝐽 ∈ ( TopOn ‘ X 𝑥 ∈ 𝐴 𝐵 ) ↔ ( 𝐽 ∈ Top ∧ X 𝑥 ∈ 𝐴 𝐵 = ∪ 𝐽 ) ) | |
| 19 | 9 17 18 | sylanbrc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐾 ∈ ( TopOn ‘ 𝐵 ) ) → 𝐽 ∈ ( TopOn ‘ X 𝑥 ∈ 𝐴 𝐵 ) ) |