This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed box in the product topology. (Contributed by Stefan O'Rear, 22-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ptcldmpt.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| ptcldmpt.j | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐽 ∈ Top ) | ||
| ptcldmpt.c | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ( Clsd ‘ 𝐽 ) ) | ||
| Assertion | ptcldmpt | ⊢ ( 𝜑 → X 𝑘 ∈ 𝐴 𝐶 ∈ ( Clsd ‘ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐽 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptcldmpt.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 2 | ptcldmpt.j | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐽 ∈ Top ) | |
| 3 | ptcldmpt.c | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ( Clsd ‘ 𝐽 ) ) | |
| 4 | nfcv | ⊢ Ⅎ 𝑙 𝐶 | |
| 5 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑙 / 𝑘 ⦌ 𝐶 | |
| 6 | csbeq1a | ⊢ ( 𝑘 = 𝑙 → 𝐶 = ⦋ 𝑙 / 𝑘 ⦌ 𝐶 ) | |
| 7 | 4 5 6 | cbvixp | ⊢ X 𝑘 ∈ 𝐴 𝐶 = X 𝑙 ∈ 𝐴 ⦋ 𝑙 / 𝑘 ⦌ 𝐶 |
| 8 | 2 | fmpttd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐽 ) : 𝐴 ⟶ Top ) |
| 9 | nfv | ⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑙 ∈ 𝐴 ) | |
| 10 | nfcv | ⊢ Ⅎ 𝑘 Clsd | |
| 11 | nffvmpt1 | ⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ 𝐴 ↦ 𝐽 ) ‘ 𝑙 ) | |
| 12 | 10 11 | nffv | ⊢ Ⅎ 𝑘 ( Clsd ‘ ( ( 𝑘 ∈ 𝐴 ↦ 𝐽 ) ‘ 𝑙 ) ) |
| 13 | 5 12 | nfel | ⊢ Ⅎ 𝑘 ⦋ 𝑙 / 𝑘 ⦌ 𝐶 ∈ ( Clsd ‘ ( ( 𝑘 ∈ 𝐴 ↦ 𝐽 ) ‘ 𝑙 ) ) |
| 14 | 9 13 | nfim | ⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑙 ∈ 𝐴 ) → ⦋ 𝑙 / 𝑘 ⦌ 𝐶 ∈ ( Clsd ‘ ( ( 𝑘 ∈ 𝐴 ↦ 𝐽 ) ‘ 𝑙 ) ) ) |
| 15 | eleq1w | ⊢ ( 𝑘 = 𝑙 → ( 𝑘 ∈ 𝐴 ↔ 𝑙 ∈ 𝐴 ) ) | |
| 16 | 15 | anbi2d | ⊢ ( 𝑘 = 𝑙 → ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝑙 ∈ 𝐴 ) ) ) |
| 17 | 2fveq3 | ⊢ ( 𝑘 = 𝑙 → ( Clsd ‘ ( ( 𝑘 ∈ 𝐴 ↦ 𝐽 ) ‘ 𝑘 ) ) = ( Clsd ‘ ( ( 𝑘 ∈ 𝐴 ↦ 𝐽 ) ‘ 𝑙 ) ) ) | |
| 18 | 6 17 | eleq12d | ⊢ ( 𝑘 = 𝑙 → ( 𝐶 ∈ ( Clsd ‘ ( ( 𝑘 ∈ 𝐴 ↦ 𝐽 ) ‘ 𝑘 ) ) ↔ ⦋ 𝑙 / 𝑘 ⦌ 𝐶 ∈ ( Clsd ‘ ( ( 𝑘 ∈ 𝐴 ↦ 𝐽 ) ‘ 𝑙 ) ) ) ) |
| 19 | 16 18 | imbi12d | ⊢ ( 𝑘 = 𝑙 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ( Clsd ‘ ( ( 𝑘 ∈ 𝐴 ↦ 𝐽 ) ‘ 𝑘 ) ) ) ↔ ( ( 𝜑 ∧ 𝑙 ∈ 𝐴 ) → ⦋ 𝑙 / 𝑘 ⦌ 𝐶 ∈ ( Clsd ‘ ( ( 𝑘 ∈ 𝐴 ↦ 𝐽 ) ‘ 𝑙 ) ) ) ) ) |
| 20 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ 𝐴 ) | |
| 21 | eqid | ⊢ ( 𝑘 ∈ 𝐴 ↦ 𝐽 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐽 ) | |
| 22 | 21 | fvmpt2 | ⊢ ( ( 𝑘 ∈ 𝐴 ∧ 𝐽 ∈ Top ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐽 ) ‘ 𝑘 ) = 𝐽 ) |
| 23 | 20 2 22 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐽 ) ‘ 𝑘 ) = 𝐽 ) |
| 24 | 23 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( Clsd ‘ ( ( 𝑘 ∈ 𝐴 ↦ 𝐽 ) ‘ 𝑘 ) ) = ( Clsd ‘ 𝐽 ) ) |
| 25 | 3 24 | eleqtrrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ( Clsd ‘ ( ( 𝑘 ∈ 𝐴 ↦ 𝐽 ) ‘ 𝑘 ) ) ) |
| 26 | 14 19 25 | chvarfv | ⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝐴 ) → ⦋ 𝑙 / 𝑘 ⦌ 𝐶 ∈ ( Clsd ‘ ( ( 𝑘 ∈ 𝐴 ↦ 𝐽 ) ‘ 𝑙 ) ) ) |
| 27 | 1 8 26 | ptcld | ⊢ ( 𝜑 → X 𝑙 ∈ 𝐴 ⦋ 𝑙 / 𝑘 ⦌ 𝐶 ∈ ( Clsd ‘ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐽 ) ) ) ) |
| 28 | 7 27 | eqeltrid | ⊢ ( 𝜑 → X 𝑘 ∈ 𝐴 𝐶 ∈ ( Clsd ‘ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐽 ) ) ) ) |