This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The closure of a box in the product topology is the box formed from the closures of the factors. This theorem is an AC equivalent. (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ptcls.2 | ⊢ 𝐽 = ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ) | |
| ptcls.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| ptcls.j | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) | ||
| ptcls.c | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑆 ⊆ 𝑋 ) | ||
| Assertion | ptcls | ⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ X 𝑘 ∈ 𝐴 𝑆 ) = X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptcls.2 | ⊢ 𝐽 = ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ) | |
| 2 | ptcls.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 3 | ptcls.j | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 4 | ptcls.c | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑆 ⊆ 𝑋 ) | |
| 5 | toponmax | ⊢ ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝑅 ) | |
| 6 | 3 5 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑋 ∈ 𝑅 ) |
| 7 | 6 4 | ssexd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑆 ∈ V ) |
| 8 | 7 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝑆 ∈ V ) |
| 9 | iunexg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑘 ∈ 𝐴 𝑆 ∈ V ) → ∪ 𝑘 ∈ 𝐴 𝑆 ∈ V ) | |
| 10 | 2 8 9 | syl2anc | ⊢ ( 𝜑 → ∪ 𝑘 ∈ 𝐴 𝑆 ∈ V ) |
| 11 | axac3 | ⊢ CHOICE | |
| 12 | acacni | ⊢ ( ( CHOICE ∧ 𝐴 ∈ 𝑉 ) → AC 𝐴 = V ) | |
| 13 | 11 2 12 | sylancr | ⊢ ( 𝜑 → AC 𝐴 = V ) |
| 14 | 10 13 | eleqtrrd | ⊢ ( 𝜑 → ∪ 𝑘 ∈ 𝐴 𝑆 ∈ AC 𝐴 ) |
| 15 | 1 2 3 4 14 | ptclsg | ⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ X 𝑘 ∈ 𝐴 𝑆 ) = X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) |