This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of two infinite Cartesian products. (Contributed by Mario Carneiro, 3-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ixpin | ⊢ X 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) = ( X 𝑥 ∈ 𝐴 𝐵 ∩ X 𝑥 ∈ 𝐴 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anandi | ⊢ ( ( 𝑓 Fn 𝐴 ∧ ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ) ↔ ( ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ∧ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ) ) | |
| 2 | elin | ⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝐵 ∩ 𝐶 ) ↔ ( ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ) | |
| 3 | 2 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ( 𝐵 ∩ 𝐶 ) ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ) |
| 4 | r19.26 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ↔ ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ) | |
| 5 | 3 4 | bitri | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ( 𝐵 ∩ 𝐶 ) ↔ ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ) |
| 6 | 5 | anbi2i | ⊢ ( ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ( 𝐵 ∩ 𝐶 ) ) ↔ ( 𝑓 Fn 𝐴 ∧ ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ) ) |
| 7 | vex | ⊢ 𝑓 ∈ V | |
| 8 | 7 | elixp | ⊢ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ↔ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 9 | 7 | elixp | ⊢ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐶 ↔ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ) |
| 10 | 8 9 | anbi12i | ⊢ ( ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐶 ) ↔ ( ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ∧ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ) ) |
| 11 | 1 6 10 | 3bitr4i | ⊢ ( ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ( 𝐵 ∩ 𝐶 ) ) ↔ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐶 ) ) |
| 12 | 7 | elixp | ⊢ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) ↔ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ( 𝐵 ∩ 𝐶 ) ) ) |
| 13 | elin | ⊢ ( 𝑓 ∈ ( X 𝑥 ∈ 𝐴 𝐵 ∩ X 𝑥 ∈ 𝐴 𝐶 ) ↔ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐶 ) ) | |
| 14 | 11 12 13 | 3bitr4i | ⊢ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) ↔ 𝑓 ∈ ( X 𝑥 ∈ 𝐴 𝐵 ∩ X 𝑥 ∈ 𝐴 𝐶 ) ) |
| 15 | 14 | eqriv | ⊢ X 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) = ( X 𝑥 ∈ 𝐴 𝐵 ∩ X 𝑥 ∈ 𝐴 𝐶 ) |