This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of being a choice set of length A . (Contributed by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | acni3.1 | ⊢ ( 𝑦 = ( 𝑔 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | acni3 | ⊢ ( ( 𝑋 ∈ AC 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑋 𝜑 ) → ∃ 𝑔 ( 𝑔 : 𝐴 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acni3.1 | ⊢ ( 𝑦 = ( 𝑔 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | rabn0 | ⊢ ( { 𝑦 ∈ 𝑋 ∣ 𝜑 } ≠ ∅ ↔ ∃ 𝑦 ∈ 𝑋 𝜑 ) | |
| 3 | 2 | biimpri | ⊢ ( ∃ 𝑦 ∈ 𝑋 𝜑 → { 𝑦 ∈ 𝑋 ∣ 𝜑 } ≠ ∅ ) |
| 4 | ssrab2 | ⊢ { 𝑦 ∈ 𝑋 ∣ 𝜑 } ⊆ 𝑋 | |
| 5 | 3 4 | jctil | ⊢ ( ∃ 𝑦 ∈ 𝑋 𝜑 → ( { 𝑦 ∈ 𝑋 ∣ 𝜑 } ⊆ 𝑋 ∧ { 𝑦 ∈ 𝑋 ∣ 𝜑 } ≠ ∅ ) ) |
| 6 | 5 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑋 𝜑 → ∀ 𝑥 ∈ 𝐴 ( { 𝑦 ∈ 𝑋 ∣ 𝜑 } ⊆ 𝑋 ∧ { 𝑦 ∈ 𝑋 ∣ 𝜑 } ≠ ∅ ) ) |
| 7 | acni2 | ⊢ ( ( 𝑋 ∈ AC 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( { 𝑦 ∈ 𝑋 ∣ 𝜑 } ⊆ 𝑋 ∧ { 𝑦 ∈ 𝑋 ∣ 𝜑 } ≠ ∅ ) ) → ∃ 𝑔 ( 𝑔 : 𝐴 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ { 𝑦 ∈ 𝑋 ∣ 𝜑 } ) ) | |
| 8 | 6 7 | sylan2 | ⊢ ( ( 𝑋 ∈ AC 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑋 𝜑 ) → ∃ 𝑔 ( 𝑔 : 𝐴 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ { 𝑦 ∈ 𝑋 ∣ 𝜑 } ) ) |
| 9 | 1 | elrab | ⊢ ( ( 𝑔 ‘ 𝑥 ) ∈ { 𝑦 ∈ 𝑋 ∣ 𝜑 } ↔ ( ( 𝑔 ‘ 𝑥 ) ∈ 𝑋 ∧ 𝜓 ) ) |
| 10 | 9 | simprbi | ⊢ ( ( 𝑔 ‘ 𝑥 ) ∈ { 𝑦 ∈ 𝑋 ∣ 𝜑 } → 𝜓 ) |
| 11 | 10 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ { 𝑦 ∈ 𝑋 ∣ 𝜑 } → ∀ 𝑥 ∈ 𝐴 𝜓 ) |
| 12 | 11 | anim2i | ⊢ ( ( 𝑔 : 𝐴 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ { 𝑦 ∈ 𝑋 ∣ 𝜑 } ) → ( 𝑔 : 𝐴 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |
| 13 | 12 | eximi | ⊢ ( ∃ 𝑔 ( 𝑔 : 𝐴 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ { 𝑦 ∈ 𝑋 ∣ 𝜑 } ) → ∃ 𝑔 ( 𝑔 : 𝐴 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |
| 14 | 8 13 | syl | ⊢ ( ( 𝑋 ∈ AC 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑋 𝜑 ) → ∃ 𝑔 ( 𝑔 : 𝐴 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |