This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a closure in terms of the members of a basis. Theorem 6.5(b) of Munkres p. 95. (Contributed by NM, 26-Feb-2007) (Revised by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elcls3.1 | ⊢ ( 𝜑 → 𝐽 = ( topGen ‘ 𝐵 ) ) | |
| elcls3.2 | ⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) | ||
| elcls3.3 | ⊢ ( 𝜑 → 𝐵 ∈ TopBases ) | ||
| elcls3.4 | ⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 ) | ||
| elcls3.5 | ⊢ ( 𝜑 → 𝑃 ∈ 𝑋 ) | ||
| Assertion | elcls3 | ⊢ ( 𝜑 → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elcls3.1 | ⊢ ( 𝜑 → 𝐽 = ( topGen ‘ 𝐵 ) ) | |
| 2 | elcls3.2 | ⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) | |
| 3 | elcls3.3 | ⊢ ( 𝜑 → 𝐵 ∈ TopBases ) | |
| 4 | elcls3.4 | ⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 ) | |
| 5 | elcls3.5 | ⊢ ( 𝜑 → 𝑃 ∈ 𝑋 ) | |
| 6 | tgcl | ⊢ ( 𝐵 ∈ TopBases → ( topGen ‘ 𝐵 ) ∈ Top ) | |
| 7 | 3 6 | syl | ⊢ ( 𝜑 → ( topGen ‘ 𝐵 ) ∈ Top ) |
| 8 | 1 7 | eqeltrd | ⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 9 | 4 2 | sseqtrd | ⊢ ( 𝜑 → 𝑆 ⊆ ∪ 𝐽 ) |
| 10 | 5 2 | eleqtrd | ⊢ ( 𝜑 → 𝑃 ∈ ∪ 𝐽 ) |
| 11 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 12 | 11 | elcls | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ∧ 𝑃 ∈ ∪ 𝐽 ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ∀ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 13 | 8 9 10 12 | syl3anc | ⊢ ( 𝜑 → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ∀ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 14 | bastg | ⊢ ( 𝐵 ∈ TopBases → 𝐵 ⊆ ( topGen ‘ 𝐵 ) ) | |
| 15 | 3 14 | syl | ⊢ ( 𝜑 → 𝐵 ⊆ ( topGen ‘ 𝐵 ) ) |
| 16 | 15 1 | sseqtrrd | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐽 ) |
| 17 | 16 | sseld | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐽 ) ) |
| 18 | 17 | imim1d | ⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐽 → ( 𝑃 ∈ 𝑦 → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) ) → ( 𝑦 ∈ 𝐵 → ( 𝑃 ∈ 𝑦 → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) ) ) ) |
| 19 | 18 | ralimdv2 | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) → ∀ 𝑦 ∈ 𝐵 ( 𝑃 ∈ 𝑦 → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 20 | eleq2w | ⊢ ( 𝑦 = 𝑥 → ( 𝑃 ∈ 𝑦 ↔ 𝑃 ∈ 𝑥 ) ) | |
| 21 | ineq1 | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∩ 𝑆 ) = ( 𝑥 ∩ 𝑆 ) ) | |
| 22 | 21 | neeq1d | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑦 ∩ 𝑆 ) ≠ ∅ ↔ ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) |
| 23 | 20 22 | imbi12d | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑃 ∈ 𝑦 → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) ↔ ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 24 | 23 | cbvralvw | ⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝑃 ∈ 𝑦 → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) |
| 25 | 19 24 | imbitrdi | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) → ∀ 𝑥 ∈ 𝐵 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 26 | simprl | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑃 ∈ 𝑦 ) ) → 𝑦 ∈ 𝐽 ) | |
| 27 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑃 ∈ 𝑦 ) ) → 𝐽 = ( topGen ‘ 𝐵 ) ) |
| 28 | 26 27 | eleqtrd | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑃 ∈ 𝑦 ) ) → 𝑦 ∈ ( topGen ‘ 𝐵 ) ) |
| 29 | simprr | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑃 ∈ 𝑦 ) ) → 𝑃 ∈ 𝑦 ) | |
| 30 | tg2 | ⊢ ( ( 𝑦 ∈ ( topGen ‘ 𝐵 ) ∧ 𝑃 ∈ 𝑦 ) → ∃ 𝑧 ∈ 𝐵 ( 𝑃 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) | |
| 31 | 28 29 30 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑃 ∈ 𝑦 ) ) → ∃ 𝑧 ∈ 𝐵 ( 𝑃 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) |
| 32 | eleq2w | ⊢ ( 𝑥 = 𝑧 → ( 𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑧 ) ) | |
| 33 | ineq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∩ 𝑆 ) = ( 𝑧 ∩ 𝑆 ) ) | |
| 34 | 33 | neeq1d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ∩ 𝑆 ) ≠ ∅ ↔ ( 𝑧 ∩ 𝑆 ) ≠ ∅ ) ) |
| 35 | 32 34 | imbi12d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ↔ ( 𝑃 ∈ 𝑧 → ( 𝑧 ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 36 | 35 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝐵 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑃 ∈ 𝑧 → ( 𝑧 ∩ 𝑆 ) ≠ ∅ ) ) |
| 37 | 36 | imp | ⊢ ( ( ( ∀ 𝑥 ∈ 𝐵 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝑧 ) → ( 𝑧 ∩ 𝑆 ) ≠ ∅ ) |
| 38 | ssdisj | ⊢ ( ( 𝑧 ⊆ 𝑦 ∧ ( 𝑦 ∩ 𝑆 ) = ∅ ) → ( 𝑧 ∩ 𝑆 ) = ∅ ) | |
| 39 | 38 | ex | ⊢ ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∩ 𝑆 ) = ∅ → ( 𝑧 ∩ 𝑆 ) = ∅ ) ) |
| 40 | 39 | necon3d | ⊢ ( 𝑧 ⊆ 𝑦 → ( ( 𝑧 ∩ 𝑆 ) ≠ ∅ → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) ) |
| 41 | 37 40 | syl5com | ⊢ ( ( ( ∀ 𝑥 ∈ 𝐵 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝑧 ) → ( 𝑧 ⊆ 𝑦 → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) ) |
| 42 | 41 | exp31 | ⊢ ( ∀ 𝑥 ∈ 𝐵 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) → ( 𝑧 ∈ 𝐵 → ( 𝑃 ∈ 𝑧 → ( 𝑧 ⊆ 𝑦 → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) ) ) ) |
| 43 | 42 | imp4a | ⊢ ( ∀ 𝑥 ∈ 𝐵 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) → ( 𝑧 ∈ 𝐵 → ( ( 𝑃 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 44 | 43 | rexlimdv | ⊢ ( ∀ 𝑥 ∈ 𝐵 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) → ( ∃ 𝑧 ∈ 𝐵 ( 𝑃 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) ) |
| 45 | 44 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑃 ∈ 𝑦 ) ) → ( ∃ 𝑧 ∈ 𝐵 ( 𝑃 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) ) |
| 46 | 31 45 | mpd | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑃 ∈ 𝑦 ) ) → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) |
| 47 | 46 | exp43 | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) → ( 𝑦 ∈ 𝐽 → ( 𝑃 ∈ 𝑦 → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) ) ) ) |
| 48 | 47 | ralrimdv | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) → ∀ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 49 | 25 48 | impbid | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 50 | 13 49 | bitrd | ⊢ ( 𝜑 → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) ) |