This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A variation on prmind assuming complete induction for primes. (Contributed by Mario Carneiro, 20-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prmind.1 | ⊢ ( 𝑥 = 1 → ( 𝜑 ↔ 𝜓 ) ) | |
| prmind.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) | ||
| prmind.3 | ⊢ ( 𝑥 = 𝑧 → ( 𝜑 ↔ 𝜃 ) ) | ||
| prmind.4 | ⊢ ( 𝑥 = ( 𝑦 · 𝑧 ) → ( 𝜑 ↔ 𝜏 ) ) | ||
| prmind.5 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜂 ) ) | ||
| prmind.6 | ⊢ 𝜓 | ||
| prmind2.7 | ⊢ ( ( 𝑥 ∈ ℙ ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑥 − 1 ) ) 𝜒 ) → 𝜑 ) | ||
| prmind2.8 | ⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝜒 ∧ 𝜃 ) → 𝜏 ) ) | ||
| Assertion | prmind2 | ⊢ ( 𝐴 ∈ ℕ → 𝜂 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmind.1 | ⊢ ( 𝑥 = 1 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | prmind.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) | |
| 3 | prmind.3 | ⊢ ( 𝑥 = 𝑧 → ( 𝜑 ↔ 𝜃 ) ) | |
| 4 | prmind.4 | ⊢ ( 𝑥 = ( 𝑦 · 𝑧 ) → ( 𝜑 ↔ 𝜏 ) ) | |
| 5 | prmind.5 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜂 ) ) | |
| 6 | prmind.6 | ⊢ 𝜓 | |
| 7 | prmind2.7 | ⊢ ( ( 𝑥 ∈ ℙ ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑥 − 1 ) ) 𝜒 ) → 𝜑 ) | |
| 8 | prmind2.8 | ⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝜒 ∧ 𝜃 ) → 𝜏 ) ) | |
| 9 | oveq2 | ⊢ ( 𝑛 = 1 → ( 1 ... 𝑛 ) = ( 1 ... 1 ) ) | |
| 10 | 9 | raleqdv | ⊢ ( 𝑛 = 1 → ( ∀ 𝑥 ∈ ( 1 ... 𝑛 ) 𝜑 ↔ ∀ 𝑥 ∈ ( 1 ... 1 ) 𝜑 ) ) |
| 11 | oveq2 | ⊢ ( 𝑛 = 𝑘 → ( 1 ... 𝑛 ) = ( 1 ... 𝑘 ) ) | |
| 12 | 11 | raleqdv | ⊢ ( 𝑛 = 𝑘 → ( ∀ 𝑥 ∈ ( 1 ... 𝑛 ) 𝜑 ↔ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ) |
| 13 | oveq2 | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 1 ... 𝑛 ) = ( 1 ... ( 𝑘 + 1 ) ) ) | |
| 14 | 13 | raleqdv | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( ∀ 𝑥 ∈ ( 1 ... 𝑛 ) 𝜑 ↔ ∀ 𝑥 ∈ ( 1 ... ( 𝑘 + 1 ) ) 𝜑 ) ) |
| 15 | oveq2 | ⊢ ( 𝑛 = 𝐴 → ( 1 ... 𝑛 ) = ( 1 ... 𝐴 ) ) | |
| 16 | 15 | raleqdv | ⊢ ( 𝑛 = 𝐴 → ( ∀ 𝑥 ∈ ( 1 ... 𝑛 ) 𝜑 ↔ ∀ 𝑥 ∈ ( 1 ... 𝐴 ) 𝜑 ) ) |
| 17 | elfz1eq | ⊢ ( 𝑥 ∈ ( 1 ... 1 ) → 𝑥 = 1 ) | |
| 18 | 17 1 | syl | ⊢ ( 𝑥 ∈ ( 1 ... 1 ) → ( 𝜑 ↔ 𝜓 ) ) |
| 19 | 6 18 | mpbiri | ⊢ ( 𝑥 ∈ ( 1 ... 1 ) → 𝜑 ) |
| 20 | 19 | rgen | ⊢ ∀ 𝑥 ∈ ( 1 ... 1 ) 𝜑 |
| 21 | peano2nn | ⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 1 ) ∈ ℕ ) | |
| 22 | 21 | ad2antrr | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( 𝑘 + 1 ) ∈ ℕ ) |
| 23 | 22 | nncnd | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( 𝑘 + 1 ) ∈ ℂ ) |
| 24 | elfzuz | ⊢ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) → 𝑦 ∈ ( ℤ≥ ‘ 2 ) ) | |
| 25 | 24 | ad2antrl | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → 𝑦 ∈ ( ℤ≥ ‘ 2 ) ) |
| 26 | eluz2nn | ⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) → 𝑦 ∈ ℕ ) | |
| 27 | 25 26 | syl | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → 𝑦 ∈ ℕ ) |
| 28 | 27 | nncnd | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → 𝑦 ∈ ℂ ) |
| 29 | 27 | nnne0d | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → 𝑦 ≠ 0 ) |
| 30 | 23 28 29 | divcan2d | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( 𝑦 · ( ( 𝑘 + 1 ) / 𝑦 ) ) = ( 𝑘 + 1 ) ) |
| 31 | simprr | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → 𝑦 ∥ ( 𝑘 + 1 ) ) | |
| 32 | 27 | nnzd | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → 𝑦 ∈ ℤ ) |
| 33 | 22 | nnzd | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( 𝑘 + 1 ) ∈ ℤ ) |
| 34 | dvdsval2 | ⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑦 ≠ 0 ∧ ( 𝑘 + 1 ) ∈ ℤ ) → ( 𝑦 ∥ ( 𝑘 + 1 ) ↔ ( ( 𝑘 + 1 ) / 𝑦 ) ∈ ℤ ) ) | |
| 35 | 32 29 33 34 | syl3anc | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( 𝑦 ∥ ( 𝑘 + 1 ) ↔ ( ( 𝑘 + 1 ) / 𝑦 ) ∈ ℤ ) ) |
| 36 | 31 35 | mpbid | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( ( 𝑘 + 1 ) / 𝑦 ) ∈ ℤ ) |
| 37 | 28 | mullidd | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( 1 · 𝑦 ) = 𝑦 ) |
| 38 | elfzle2 | ⊢ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) → 𝑦 ≤ ( ( 𝑘 + 1 ) − 1 ) ) | |
| 39 | 38 | ad2antrl | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → 𝑦 ≤ ( ( 𝑘 + 1 ) − 1 ) ) |
| 40 | nncn | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) | |
| 41 | 40 | ad2antrr | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → 𝑘 ∈ ℂ ) |
| 42 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 43 | pncan | ⊢ ( ( 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑘 + 1 ) − 1 ) = 𝑘 ) | |
| 44 | 41 42 43 | sylancl | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( ( 𝑘 + 1 ) − 1 ) = 𝑘 ) |
| 45 | 39 44 | breqtrd | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → 𝑦 ≤ 𝑘 ) |
| 46 | nnz | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℤ ) | |
| 47 | 46 | ad2antrr | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → 𝑘 ∈ ℤ ) |
| 48 | zleltp1 | ⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( 𝑦 ≤ 𝑘 ↔ 𝑦 < ( 𝑘 + 1 ) ) ) | |
| 49 | 32 47 48 | syl2anc | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( 𝑦 ≤ 𝑘 ↔ 𝑦 < ( 𝑘 + 1 ) ) ) |
| 50 | 45 49 | mpbid | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → 𝑦 < ( 𝑘 + 1 ) ) |
| 51 | 37 50 | eqbrtrd | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( 1 · 𝑦 ) < ( 𝑘 + 1 ) ) |
| 52 | 1red | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → 1 ∈ ℝ ) | |
| 53 | 22 | nnred | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( 𝑘 + 1 ) ∈ ℝ ) |
| 54 | 27 | nnred | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → 𝑦 ∈ ℝ ) |
| 55 | 27 | nngt0d | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → 0 < 𝑦 ) |
| 56 | ltmuldiv | ⊢ ( ( 1 ∈ ℝ ∧ ( 𝑘 + 1 ) ∈ ℝ ∧ ( 𝑦 ∈ ℝ ∧ 0 < 𝑦 ) ) → ( ( 1 · 𝑦 ) < ( 𝑘 + 1 ) ↔ 1 < ( ( 𝑘 + 1 ) / 𝑦 ) ) ) | |
| 57 | 52 53 54 55 56 | syl112anc | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( ( 1 · 𝑦 ) < ( 𝑘 + 1 ) ↔ 1 < ( ( 𝑘 + 1 ) / 𝑦 ) ) ) |
| 58 | 51 57 | mpbid | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → 1 < ( ( 𝑘 + 1 ) / 𝑦 ) ) |
| 59 | eluz2b1 | ⊢ ( ( ( 𝑘 + 1 ) / 𝑦 ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( ( ( 𝑘 + 1 ) / 𝑦 ) ∈ ℤ ∧ 1 < ( ( 𝑘 + 1 ) / 𝑦 ) ) ) | |
| 60 | 36 58 59 | sylanbrc | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( ( 𝑘 + 1 ) / 𝑦 ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 61 | simplr | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) | |
| 62 | fznn | ⊢ ( 𝑘 ∈ ℤ → ( 𝑦 ∈ ( 1 ... 𝑘 ) ↔ ( 𝑦 ∈ ℕ ∧ 𝑦 ≤ 𝑘 ) ) ) | |
| 63 | 47 62 | syl | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( 𝑦 ∈ ( 1 ... 𝑘 ) ↔ ( 𝑦 ∈ ℕ ∧ 𝑦 ≤ 𝑘 ) ) ) |
| 64 | 27 45 63 | mpbir2and | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → 𝑦 ∈ ( 1 ... 𝑘 ) ) |
| 65 | 2 61 64 | rspcdva | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → 𝜒 ) |
| 66 | vex | ⊢ 𝑧 ∈ V | |
| 67 | 66 3 | sbcie | ⊢ ( [ 𝑧 / 𝑥 ] 𝜑 ↔ 𝜃 ) |
| 68 | dfsbcq | ⊢ ( 𝑧 = ( ( 𝑘 + 1 ) / 𝑦 ) → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ ( ( 𝑘 + 1 ) / 𝑦 ) / 𝑥 ] 𝜑 ) ) | |
| 69 | 67 68 | bitr3id | ⊢ ( 𝑧 = ( ( 𝑘 + 1 ) / 𝑦 ) → ( 𝜃 ↔ [ ( ( 𝑘 + 1 ) / 𝑦 ) / 𝑥 ] 𝜑 ) ) |
| 70 | 3 | cbvralvw | ⊢ ( ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ↔ ∀ 𝑧 ∈ ( 1 ... 𝑘 ) 𝜃 ) |
| 71 | 61 70 | sylib | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ∀ 𝑧 ∈ ( 1 ... 𝑘 ) 𝜃 ) |
| 72 | 22 | nnrpd | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( 𝑘 + 1 ) ∈ ℝ+ ) |
| 73 | 27 | nnrpd | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → 𝑦 ∈ ℝ+ ) |
| 74 | 72 73 | rpdivcld | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( ( 𝑘 + 1 ) / 𝑦 ) ∈ ℝ+ ) |
| 75 | 74 | rpgt0d | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → 0 < ( ( 𝑘 + 1 ) / 𝑦 ) ) |
| 76 | elnnz | ⊢ ( ( ( 𝑘 + 1 ) / 𝑦 ) ∈ ℕ ↔ ( ( ( 𝑘 + 1 ) / 𝑦 ) ∈ ℤ ∧ 0 < ( ( 𝑘 + 1 ) / 𝑦 ) ) ) | |
| 77 | 36 75 76 | sylanbrc | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( ( 𝑘 + 1 ) / 𝑦 ) ∈ ℕ ) |
| 78 | 22 | nnne0d | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( 𝑘 + 1 ) ≠ 0 ) |
| 79 | 23 78 | dividd | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( ( 𝑘 + 1 ) / ( 𝑘 + 1 ) ) = 1 ) |
| 80 | eluz2gt1 | ⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) → 1 < 𝑦 ) | |
| 81 | 25 80 | syl | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → 1 < 𝑦 ) |
| 82 | 79 81 | eqbrtrd | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( ( 𝑘 + 1 ) / ( 𝑘 + 1 ) ) < 𝑦 ) |
| 83 | 22 | nngt0d | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → 0 < ( 𝑘 + 1 ) ) |
| 84 | ltdiv23 | ⊢ ( ( ( 𝑘 + 1 ) ∈ ℝ ∧ ( ( 𝑘 + 1 ) ∈ ℝ ∧ 0 < ( 𝑘 + 1 ) ) ∧ ( 𝑦 ∈ ℝ ∧ 0 < 𝑦 ) ) → ( ( ( 𝑘 + 1 ) / ( 𝑘 + 1 ) ) < 𝑦 ↔ ( ( 𝑘 + 1 ) / 𝑦 ) < ( 𝑘 + 1 ) ) ) | |
| 85 | 53 53 83 54 55 84 | syl122anc | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( ( ( 𝑘 + 1 ) / ( 𝑘 + 1 ) ) < 𝑦 ↔ ( ( 𝑘 + 1 ) / 𝑦 ) < ( 𝑘 + 1 ) ) ) |
| 86 | 82 85 | mpbid | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( ( 𝑘 + 1 ) / 𝑦 ) < ( 𝑘 + 1 ) ) |
| 87 | zleltp1 | ⊢ ( ( ( ( 𝑘 + 1 ) / 𝑦 ) ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( ( ( 𝑘 + 1 ) / 𝑦 ) ≤ 𝑘 ↔ ( ( 𝑘 + 1 ) / 𝑦 ) < ( 𝑘 + 1 ) ) ) | |
| 88 | 36 47 87 | syl2anc | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( ( ( 𝑘 + 1 ) / 𝑦 ) ≤ 𝑘 ↔ ( ( 𝑘 + 1 ) / 𝑦 ) < ( 𝑘 + 1 ) ) ) |
| 89 | 86 88 | mpbird | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( ( 𝑘 + 1 ) / 𝑦 ) ≤ 𝑘 ) |
| 90 | fznn | ⊢ ( 𝑘 ∈ ℤ → ( ( ( 𝑘 + 1 ) / 𝑦 ) ∈ ( 1 ... 𝑘 ) ↔ ( ( ( 𝑘 + 1 ) / 𝑦 ) ∈ ℕ ∧ ( ( 𝑘 + 1 ) / 𝑦 ) ≤ 𝑘 ) ) ) | |
| 91 | 47 90 | syl | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( ( ( 𝑘 + 1 ) / 𝑦 ) ∈ ( 1 ... 𝑘 ) ↔ ( ( ( 𝑘 + 1 ) / 𝑦 ) ∈ ℕ ∧ ( ( 𝑘 + 1 ) / 𝑦 ) ≤ 𝑘 ) ) ) |
| 92 | 77 89 91 | mpbir2and | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( ( 𝑘 + 1 ) / 𝑦 ) ∈ ( 1 ... 𝑘 ) ) |
| 93 | 69 71 92 | rspcdva | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → [ ( ( 𝑘 + 1 ) / 𝑦 ) / 𝑥 ] 𝜑 ) |
| 94 | 65 93 | jca | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → ( 𝜒 ∧ [ ( ( 𝑘 + 1 ) / 𝑦 ) / 𝑥 ] 𝜑 ) ) |
| 95 | 69 | anbi2d | ⊢ ( 𝑧 = ( ( 𝑘 + 1 ) / 𝑦 ) → ( ( 𝜒 ∧ 𝜃 ) ↔ ( 𝜒 ∧ [ ( ( 𝑘 + 1 ) / 𝑦 ) / 𝑥 ] 𝜑 ) ) ) |
| 96 | ovex | ⊢ ( 𝑦 · 𝑧 ) ∈ V | |
| 97 | 96 4 | sbcie | ⊢ ( [ ( 𝑦 · 𝑧 ) / 𝑥 ] 𝜑 ↔ 𝜏 ) |
| 98 | oveq2 | ⊢ ( 𝑧 = ( ( 𝑘 + 1 ) / 𝑦 ) → ( 𝑦 · 𝑧 ) = ( 𝑦 · ( ( 𝑘 + 1 ) / 𝑦 ) ) ) | |
| 99 | 98 | sbceq1d | ⊢ ( 𝑧 = ( ( 𝑘 + 1 ) / 𝑦 ) → ( [ ( 𝑦 · 𝑧 ) / 𝑥 ] 𝜑 ↔ [ ( 𝑦 · ( ( 𝑘 + 1 ) / 𝑦 ) ) / 𝑥 ] 𝜑 ) ) |
| 100 | 97 99 | bitr3id | ⊢ ( 𝑧 = ( ( 𝑘 + 1 ) / 𝑦 ) → ( 𝜏 ↔ [ ( 𝑦 · ( ( 𝑘 + 1 ) / 𝑦 ) ) / 𝑥 ] 𝜑 ) ) |
| 101 | 95 100 | imbi12d | ⊢ ( 𝑧 = ( ( 𝑘 + 1 ) / 𝑦 ) → ( ( ( 𝜒 ∧ 𝜃 ) → 𝜏 ) ↔ ( ( 𝜒 ∧ [ ( ( 𝑘 + 1 ) / 𝑦 ) / 𝑥 ] 𝜑 ) → [ ( 𝑦 · ( ( 𝑘 + 1 ) / 𝑦 ) ) / 𝑥 ] 𝜑 ) ) ) |
| 102 | 101 | imbi2d | ⊢ ( 𝑧 = ( ( 𝑘 + 1 ) / 𝑦 ) → ( ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝜒 ∧ 𝜃 ) → 𝜏 ) ) ↔ ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝜒 ∧ [ ( ( 𝑘 + 1 ) / 𝑦 ) / 𝑥 ] 𝜑 ) → [ ( 𝑦 · ( ( 𝑘 + 1 ) / 𝑦 ) ) / 𝑥 ] 𝜑 ) ) ) ) |
| 103 | 8 | expcom | ⊢ ( 𝑧 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝜒 ∧ 𝜃 ) → 𝜏 ) ) ) |
| 104 | 102 103 | vtoclga | ⊢ ( ( ( 𝑘 + 1 ) / 𝑦 ) ∈ ( ℤ≥ ‘ 2 ) → ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝜒 ∧ [ ( ( 𝑘 + 1 ) / 𝑦 ) / 𝑥 ] 𝜑 ) → [ ( 𝑦 · ( ( 𝑘 + 1 ) / 𝑦 ) ) / 𝑥 ] 𝜑 ) ) ) |
| 105 | 60 25 94 104 | syl3c | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → [ ( 𝑦 · ( ( 𝑘 + 1 ) / 𝑦 ) ) / 𝑥 ] 𝜑 ) |
| 106 | 30 105 | sbceq1dd | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) ∧ ( 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ∧ 𝑦 ∥ ( 𝑘 + 1 ) ) ) → [ ( 𝑘 + 1 ) / 𝑥 ] 𝜑 ) |
| 107 | 106 | rexlimdvaa | ⊢ ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) → ( ∃ 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) 𝑦 ∥ ( 𝑘 + 1 ) → [ ( 𝑘 + 1 ) / 𝑥 ] 𝜑 ) ) |
| 108 | ralnex | ⊢ ( ∀ 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ¬ 𝑦 ∥ ( 𝑘 + 1 ) ↔ ¬ ∃ 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) 𝑦 ∥ ( 𝑘 + 1 ) ) | |
| 109 | simpl | ⊢ ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) → 𝑘 ∈ ℕ ) | |
| 110 | elnnuz | ⊢ ( 𝑘 ∈ ℕ ↔ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) | |
| 111 | 109 110 | sylib | ⊢ ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
| 112 | eluzp1p1 | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 1 ) → ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ ( 1 + 1 ) ) ) | |
| 113 | 111 112 | syl | ⊢ ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) → ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ ( 1 + 1 ) ) ) |
| 114 | df-2 | ⊢ 2 = ( 1 + 1 ) | |
| 115 | 114 | fveq2i | ⊢ ( ℤ≥ ‘ 2 ) = ( ℤ≥ ‘ ( 1 + 1 ) ) |
| 116 | 113 115 | eleqtrrdi | ⊢ ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) → ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 117 | isprm3 | ⊢ ( ( 𝑘 + 1 ) ∈ ℙ ↔ ( ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ¬ 𝑦 ∥ ( 𝑘 + 1 ) ) ) | |
| 118 | 117 | baibr | ⊢ ( ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ 2 ) → ( ∀ 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ¬ 𝑦 ∥ ( 𝑘 + 1 ) ↔ ( 𝑘 + 1 ) ∈ ℙ ) ) |
| 119 | 116 118 | syl | ⊢ ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) → ( ∀ 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ¬ 𝑦 ∥ ( 𝑘 + 1 ) ↔ ( 𝑘 + 1 ) ∈ ℙ ) ) |
| 120 | simpr | ⊢ ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) → ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) | |
| 121 | 2 | cbvralvw | ⊢ ( ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ↔ ∀ 𝑦 ∈ ( 1 ... 𝑘 ) 𝜒 ) |
| 122 | 120 121 | sylib | ⊢ ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) → ∀ 𝑦 ∈ ( 1 ... 𝑘 ) 𝜒 ) |
| 123 | 109 | nncnd | ⊢ ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) → 𝑘 ∈ ℂ ) |
| 124 | 123 42 43 | sylancl | ⊢ ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) → ( ( 𝑘 + 1 ) − 1 ) = 𝑘 ) |
| 125 | 124 | oveq2d | ⊢ ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) → ( 1 ... ( ( 𝑘 + 1 ) − 1 ) ) = ( 1 ... 𝑘 ) ) |
| 126 | 122 125 | raleqtrrdv | ⊢ ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) → ∀ 𝑦 ∈ ( 1 ... ( ( 𝑘 + 1 ) − 1 ) ) 𝜒 ) |
| 127 | nfcv | ⊢ Ⅎ 𝑥 ( 𝑘 + 1 ) | |
| 128 | nfv | ⊢ Ⅎ 𝑥 ∀ 𝑦 ∈ ( 1 ... ( ( 𝑘 + 1 ) − 1 ) ) 𝜒 | |
| 129 | nfsbc1v | ⊢ Ⅎ 𝑥 [ ( 𝑘 + 1 ) / 𝑥 ] 𝜑 | |
| 130 | 128 129 | nfim | ⊢ Ⅎ 𝑥 ( ∀ 𝑦 ∈ ( 1 ... ( ( 𝑘 + 1 ) − 1 ) ) 𝜒 → [ ( 𝑘 + 1 ) / 𝑥 ] 𝜑 ) |
| 131 | oveq1 | ⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( 𝑥 − 1 ) = ( ( 𝑘 + 1 ) − 1 ) ) | |
| 132 | 131 | oveq2d | ⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( 1 ... ( 𝑥 − 1 ) ) = ( 1 ... ( ( 𝑘 + 1 ) − 1 ) ) ) |
| 133 | 132 | raleqdv | ⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ∀ 𝑦 ∈ ( 1 ... ( 𝑥 − 1 ) ) 𝜒 ↔ ∀ 𝑦 ∈ ( 1 ... ( ( 𝑘 + 1 ) − 1 ) ) 𝜒 ) ) |
| 134 | sbceq1a | ⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( 𝜑 ↔ [ ( 𝑘 + 1 ) / 𝑥 ] 𝜑 ) ) | |
| 135 | 133 134 | imbi12d | ⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ( ∀ 𝑦 ∈ ( 1 ... ( 𝑥 − 1 ) ) 𝜒 → 𝜑 ) ↔ ( ∀ 𝑦 ∈ ( 1 ... ( ( 𝑘 + 1 ) − 1 ) ) 𝜒 → [ ( 𝑘 + 1 ) / 𝑥 ] 𝜑 ) ) ) |
| 136 | 7 | ex | ⊢ ( 𝑥 ∈ ℙ → ( ∀ 𝑦 ∈ ( 1 ... ( 𝑥 − 1 ) ) 𝜒 → 𝜑 ) ) |
| 137 | 127 130 135 136 | vtoclgaf | ⊢ ( ( 𝑘 + 1 ) ∈ ℙ → ( ∀ 𝑦 ∈ ( 1 ... ( ( 𝑘 + 1 ) − 1 ) ) 𝜒 → [ ( 𝑘 + 1 ) / 𝑥 ] 𝜑 ) ) |
| 138 | 126 137 | syl5com | ⊢ ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) → ( ( 𝑘 + 1 ) ∈ ℙ → [ ( 𝑘 + 1 ) / 𝑥 ] 𝜑 ) ) |
| 139 | 119 138 | sylbid | ⊢ ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) → ( ∀ 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) ¬ 𝑦 ∥ ( 𝑘 + 1 ) → [ ( 𝑘 + 1 ) / 𝑥 ] 𝜑 ) ) |
| 140 | 108 139 | biimtrrid | ⊢ ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) → ( ¬ ∃ 𝑦 ∈ ( 2 ... ( ( 𝑘 + 1 ) − 1 ) ) 𝑦 ∥ ( 𝑘 + 1 ) → [ ( 𝑘 + 1 ) / 𝑥 ] 𝜑 ) ) |
| 141 | 107 140 | pm2.61d | ⊢ ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ) → [ ( 𝑘 + 1 ) / 𝑥 ] 𝜑 ) |
| 142 | 141 | ex | ⊢ ( 𝑘 ∈ ℕ → ( ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 → [ ( 𝑘 + 1 ) / 𝑥 ] 𝜑 ) ) |
| 143 | ralsnsg | ⊢ ( ( 𝑘 + 1 ) ∈ ℕ → ( ∀ 𝑥 ∈ { ( 𝑘 + 1 ) } 𝜑 ↔ [ ( 𝑘 + 1 ) / 𝑥 ] 𝜑 ) ) | |
| 144 | 21 143 | syl | ⊢ ( 𝑘 ∈ ℕ → ( ∀ 𝑥 ∈ { ( 𝑘 + 1 ) } 𝜑 ↔ [ ( 𝑘 + 1 ) / 𝑥 ] 𝜑 ) ) |
| 145 | 142 144 | sylibrd | ⊢ ( 𝑘 ∈ ℕ → ( ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 → ∀ 𝑥 ∈ { ( 𝑘 + 1 ) } 𝜑 ) ) |
| 146 | 145 | ancld | ⊢ ( 𝑘 ∈ ℕ → ( ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 → ( ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ∧ ∀ 𝑥 ∈ { ( 𝑘 + 1 ) } 𝜑 ) ) ) |
| 147 | fzsuc | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 1 ) → ( 1 ... ( 𝑘 + 1 ) ) = ( ( 1 ... 𝑘 ) ∪ { ( 𝑘 + 1 ) } ) ) | |
| 148 | 110 147 | sylbi | ⊢ ( 𝑘 ∈ ℕ → ( 1 ... ( 𝑘 + 1 ) ) = ( ( 1 ... 𝑘 ) ∪ { ( 𝑘 + 1 ) } ) ) |
| 149 | 148 | raleqdv | ⊢ ( 𝑘 ∈ ℕ → ( ∀ 𝑥 ∈ ( 1 ... ( 𝑘 + 1 ) ) 𝜑 ↔ ∀ 𝑥 ∈ ( ( 1 ... 𝑘 ) ∪ { ( 𝑘 + 1 ) } ) 𝜑 ) ) |
| 150 | ralunb | ⊢ ( ∀ 𝑥 ∈ ( ( 1 ... 𝑘 ) ∪ { ( 𝑘 + 1 ) } ) 𝜑 ↔ ( ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ∧ ∀ 𝑥 ∈ { ( 𝑘 + 1 ) } 𝜑 ) ) | |
| 151 | 149 150 | bitrdi | ⊢ ( 𝑘 ∈ ℕ → ( ∀ 𝑥 ∈ ( 1 ... ( 𝑘 + 1 ) ) 𝜑 ↔ ( ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 ∧ ∀ 𝑥 ∈ { ( 𝑘 + 1 ) } 𝜑 ) ) ) |
| 152 | 146 151 | sylibrd | ⊢ ( 𝑘 ∈ ℕ → ( ∀ 𝑥 ∈ ( 1 ... 𝑘 ) 𝜑 → ∀ 𝑥 ∈ ( 1 ... ( 𝑘 + 1 ) ) 𝜑 ) ) |
| 153 | 10 12 14 16 20 152 | nnind | ⊢ ( 𝐴 ∈ ℕ → ∀ 𝑥 ∈ ( 1 ... 𝐴 ) 𝜑 ) |
| 154 | elfz1end | ⊢ ( 𝐴 ∈ ℕ ↔ 𝐴 ∈ ( 1 ... 𝐴 ) ) | |
| 155 | 154 | biimpi | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ( 1 ... 𝐴 ) ) |
| 156 | 5 153 155 | rspcdva | ⊢ ( 𝐴 ∈ ℕ → 𝜂 ) |