This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Perform induction over the multiplicative structure of NN . If a property ph ( x ) holds for the primes and 1 and is preserved under multiplication, then it holds for every positive integer. (Contributed by Mario Carneiro, 20-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prmind.1 | ⊢ ( 𝑥 = 1 → ( 𝜑 ↔ 𝜓 ) ) | |
| prmind.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) | ||
| prmind.3 | ⊢ ( 𝑥 = 𝑧 → ( 𝜑 ↔ 𝜃 ) ) | ||
| prmind.4 | ⊢ ( 𝑥 = ( 𝑦 · 𝑧 ) → ( 𝜑 ↔ 𝜏 ) ) | ||
| prmind.5 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜂 ) ) | ||
| prmind.6 | ⊢ 𝜓 | ||
| prmind.7 | ⊢ ( 𝑥 ∈ ℙ → 𝜑 ) | ||
| prmind.8 | ⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝜒 ∧ 𝜃 ) → 𝜏 ) ) | ||
| Assertion | prmind | ⊢ ( 𝐴 ∈ ℕ → 𝜂 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmind.1 | ⊢ ( 𝑥 = 1 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | prmind.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) | |
| 3 | prmind.3 | ⊢ ( 𝑥 = 𝑧 → ( 𝜑 ↔ 𝜃 ) ) | |
| 4 | prmind.4 | ⊢ ( 𝑥 = ( 𝑦 · 𝑧 ) → ( 𝜑 ↔ 𝜏 ) ) | |
| 5 | prmind.5 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜂 ) ) | |
| 6 | prmind.6 | ⊢ 𝜓 | |
| 7 | prmind.7 | ⊢ ( 𝑥 ∈ ℙ → 𝜑 ) | |
| 8 | prmind.8 | ⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝜒 ∧ 𝜃 ) → 𝜏 ) ) | |
| 9 | 7 | adantr | ⊢ ( ( 𝑥 ∈ ℙ ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑥 − 1 ) ) 𝜒 ) → 𝜑 ) |
| 10 | 1 2 3 4 5 6 9 8 | prmind2 | ⊢ ( 𝐴 ∈ ℕ → 𝜂 ) |