This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a prime number". A prime number is an integer greater than or equal to 2 with no divisors strictly between 1 and itself. (Contributed by Paul Chapman, 26-Oct-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isprm3 | ⊢ ( 𝑃 ∈ ℙ ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ( 2 ... ( 𝑃 − 1 ) ) ¬ 𝑧 ∥ 𝑃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isprm2 | ⊢ ( 𝑃 ∈ ℙ ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ℕ ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) ) | |
| 2 | iman | ⊢ ( ( 𝑧 ∈ ℕ → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ↔ ¬ ( 𝑧 ∈ ℕ ∧ ¬ ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) | |
| 3 | eluz2nn | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 𝑃 ∈ ℕ ) | |
| 4 | nnz | ⊢ ( 𝑧 ∈ ℕ → 𝑧 ∈ ℤ ) | |
| 5 | dvdsle | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑃 ∈ ℕ ) → ( 𝑧 ∥ 𝑃 → 𝑧 ≤ 𝑃 ) ) | |
| 6 | 4 5 | sylan | ⊢ ( ( 𝑧 ∈ ℕ ∧ 𝑃 ∈ ℕ ) → ( 𝑧 ∥ 𝑃 → 𝑧 ≤ 𝑃 ) ) |
| 7 | nnge1 | ⊢ ( 𝑧 ∈ ℕ → 1 ≤ 𝑧 ) | |
| 8 | 7 | adantr | ⊢ ( ( 𝑧 ∈ ℕ ∧ 𝑃 ∈ ℕ ) → 1 ≤ 𝑧 ) |
| 9 | 6 8 | jctild | ⊢ ( ( 𝑧 ∈ ℕ ∧ 𝑃 ∈ ℕ ) → ( 𝑧 ∥ 𝑃 → ( 1 ≤ 𝑧 ∧ 𝑧 ≤ 𝑃 ) ) ) |
| 10 | 3 9 | sylan2 | ⊢ ( ( 𝑧 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑧 ∥ 𝑃 → ( 1 ≤ 𝑧 ∧ 𝑧 ≤ 𝑃 ) ) ) |
| 11 | zre | ⊢ ( 𝑧 ∈ ℤ → 𝑧 ∈ ℝ ) | |
| 12 | nnre | ⊢ ( 𝑃 ∈ ℕ → 𝑃 ∈ ℝ ) | |
| 13 | 1re | ⊢ 1 ∈ ℝ | |
| 14 | leltne | ⊢ ( ( 1 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 1 ≤ 𝑧 ) → ( 1 < 𝑧 ↔ 𝑧 ≠ 1 ) ) | |
| 15 | 13 14 | mp3an1 | ⊢ ( ( 𝑧 ∈ ℝ ∧ 1 ≤ 𝑧 ) → ( 1 < 𝑧 ↔ 𝑧 ≠ 1 ) ) |
| 16 | 15 | 3adant2 | ⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ 1 ≤ 𝑧 ) → ( 1 < 𝑧 ↔ 𝑧 ≠ 1 ) ) |
| 17 | 16 | 3expia | ⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑃 ∈ ℝ ) → ( 1 ≤ 𝑧 → ( 1 < 𝑧 ↔ 𝑧 ≠ 1 ) ) ) |
| 18 | leltne | ⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ 𝑧 ≤ 𝑃 ) → ( 𝑧 < 𝑃 ↔ 𝑃 ≠ 𝑧 ) ) | |
| 19 | 18 | 3expia | ⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑃 ∈ ℝ ) → ( 𝑧 ≤ 𝑃 → ( 𝑧 < 𝑃 ↔ 𝑃 ≠ 𝑧 ) ) ) |
| 20 | 17 19 | anim12d | ⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑃 ∈ ℝ ) → ( ( 1 ≤ 𝑧 ∧ 𝑧 ≤ 𝑃 ) → ( ( 1 < 𝑧 ↔ 𝑧 ≠ 1 ) ∧ ( 𝑧 < 𝑃 ↔ 𝑃 ≠ 𝑧 ) ) ) ) |
| 21 | 11 12 20 | syl2an | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑃 ∈ ℕ ) → ( ( 1 ≤ 𝑧 ∧ 𝑧 ≤ 𝑃 ) → ( ( 1 < 𝑧 ↔ 𝑧 ≠ 1 ) ∧ ( 𝑧 < 𝑃 ↔ 𝑃 ≠ 𝑧 ) ) ) ) |
| 22 | pm4.38 | ⊢ ( ( ( 1 < 𝑧 ↔ 𝑧 ≠ 1 ) ∧ ( 𝑧 < 𝑃 ↔ 𝑃 ≠ 𝑧 ) ) → ( ( 1 < 𝑧 ∧ 𝑧 < 𝑃 ) ↔ ( 𝑧 ≠ 1 ∧ 𝑃 ≠ 𝑧 ) ) ) | |
| 23 | df-ne | ⊢ ( 𝑧 ≠ 1 ↔ ¬ 𝑧 = 1 ) | |
| 24 | nesym | ⊢ ( 𝑃 ≠ 𝑧 ↔ ¬ 𝑧 = 𝑃 ) | |
| 25 | 23 24 | anbi12i | ⊢ ( ( 𝑧 ≠ 1 ∧ 𝑃 ≠ 𝑧 ) ↔ ( ¬ 𝑧 = 1 ∧ ¬ 𝑧 = 𝑃 ) ) |
| 26 | ioran | ⊢ ( ¬ ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ↔ ( ¬ 𝑧 = 1 ∧ ¬ 𝑧 = 𝑃 ) ) | |
| 27 | 25 26 | bitr4i | ⊢ ( ( 𝑧 ≠ 1 ∧ 𝑃 ≠ 𝑧 ) ↔ ¬ ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) |
| 28 | 22 27 | bitrdi | ⊢ ( ( ( 1 < 𝑧 ↔ 𝑧 ≠ 1 ) ∧ ( 𝑧 < 𝑃 ↔ 𝑃 ≠ 𝑧 ) ) → ( ( 1 < 𝑧 ∧ 𝑧 < 𝑃 ) ↔ ¬ ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) |
| 29 | 21 28 | syl6 | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑃 ∈ ℕ ) → ( ( 1 ≤ 𝑧 ∧ 𝑧 ≤ 𝑃 ) → ( ( 1 < 𝑧 ∧ 𝑧 < 𝑃 ) ↔ ¬ ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) ) |
| 30 | 4 3 29 | syl2an | ⊢ ( ( 𝑧 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 1 ≤ 𝑧 ∧ 𝑧 ≤ 𝑃 ) → ( ( 1 < 𝑧 ∧ 𝑧 < 𝑃 ) ↔ ¬ ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) ) |
| 31 | 10 30 | syld | ⊢ ( ( 𝑧 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑧 ∥ 𝑃 → ( ( 1 < 𝑧 ∧ 𝑧 < 𝑃 ) ↔ ¬ ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) ) |
| 32 | 31 | imp | ⊢ ( ( ( 𝑧 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) ∧ 𝑧 ∥ 𝑃 ) → ( ( 1 < 𝑧 ∧ 𝑧 < 𝑃 ) ↔ ¬ ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) |
| 33 | eluzelz | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 𝑃 ∈ ℤ ) | |
| 34 | 1z | ⊢ 1 ∈ ℤ | |
| 35 | zltp1le | ⊢ ( ( 1 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( 1 < 𝑧 ↔ ( 1 + 1 ) ≤ 𝑧 ) ) | |
| 36 | 34 35 | mpan | ⊢ ( 𝑧 ∈ ℤ → ( 1 < 𝑧 ↔ ( 1 + 1 ) ≤ 𝑧 ) ) |
| 37 | df-2 | ⊢ 2 = ( 1 + 1 ) | |
| 38 | 37 | breq1i | ⊢ ( 2 ≤ 𝑧 ↔ ( 1 + 1 ) ≤ 𝑧 ) |
| 39 | 36 38 | bitr4di | ⊢ ( 𝑧 ∈ ℤ → ( 1 < 𝑧 ↔ 2 ≤ 𝑧 ) ) |
| 40 | 39 | adantr | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 1 < 𝑧 ↔ 2 ≤ 𝑧 ) ) |
| 41 | zltlem1 | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 𝑧 < 𝑃 ↔ 𝑧 ≤ ( 𝑃 − 1 ) ) ) | |
| 42 | 40 41 | anbi12d | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 1 < 𝑧 ∧ 𝑧 < 𝑃 ) ↔ ( 2 ≤ 𝑧 ∧ 𝑧 ≤ ( 𝑃 − 1 ) ) ) ) |
| 43 | peano2zm | ⊢ ( 𝑃 ∈ ℤ → ( 𝑃 − 1 ) ∈ ℤ ) | |
| 44 | 2z | ⊢ 2 ∈ ℤ | |
| 45 | elfz | ⊢ ( ( 𝑧 ∈ ℤ ∧ 2 ∈ ℤ ∧ ( 𝑃 − 1 ) ∈ ℤ ) → ( 𝑧 ∈ ( 2 ... ( 𝑃 − 1 ) ) ↔ ( 2 ≤ 𝑧 ∧ 𝑧 ≤ ( 𝑃 − 1 ) ) ) ) | |
| 46 | 44 45 | mp3an2 | ⊢ ( ( 𝑧 ∈ ℤ ∧ ( 𝑃 − 1 ) ∈ ℤ ) → ( 𝑧 ∈ ( 2 ... ( 𝑃 − 1 ) ) ↔ ( 2 ≤ 𝑧 ∧ 𝑧 ≤ ( 𝑃 − 1 ) ) ) ) |
| 47 | 43 46 | sylan2 | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 𝑧 ∈ ( 2 ... ( 𝑃 − 1 ) ) ↔ ( 2 ≤ 𝑧 ∧ 𝑧 ≤ ( 𝑃 − 1 ) ) ) ) |
| 48 | 42 47 | bitr4d | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 1 < 𝑧 ∧ 𝑧 < 𝑃 ) ↔ 𝑧 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ) |
| 49 | 4 33 48 | syl2an | ⊢ ( ( 𝑧 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 1 < 𝑧 ∧ 𝑧 < 𝑃 ) ↔ 𝑧 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ) |
| 50 | 49 | adantr | ⊢ ( ( ( 𝑧 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) ∧ 𝑧 ∥ 𝑃 ) → ( ( 1 < 𝑧 ∧ 𝑧 < 𝑃 ) ↔ 𝑧 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ) |
| 51 | 32 50 | bitr3d | ⊢ ( ( ( 𝑧 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) ∧ 𝑧 ∥ 𝑃 ) → ( ¬ ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ↔ 𝑧 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ) |
| 52 | 51 | anasss | ⊢ ( ( 𝑧 ∈ ℕ ∧ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∥ 𝑃 ) ) → ( ¬ ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ↔ 𝑧 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ) |
| 53 | 52 | expcom | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∥ 𝑃 ) → ( 𝑧 ∈ ℕ → ( ¬ ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ↔ 𝑧 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ) ) |
| 54 | 53 | pm5.32d | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∥ 𝑃 ) → ( ( 𝑧 ∈ ℕ ∧ ¬ ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ↔ ( 𝑧 ∈ ℕ ∧ 𝑧 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ) ) |
| 55 | fzssuz | ⊢ ( 2 ... ( 𝑃 − 1 ) ) ⊆ ( ℤ≥ ‘ 2 ) | |
| 56 | 2eluzge1 | ⊢ 2 ∈ ( ℤ≥ ‘ 1 ) | |
| 57 | uzss | ⊢ ( 2 ∈ ( ℤ≥ ‘ 1 ) → ( ℤ≥ ‘ 2 ) ⊆ ( ℤ≥ ‘ 1 ) ) | |
| 58 | 56 57 | ax-mp | ⊢ ( ℤ≥ ‘ 2 ) ⊆ ( ℤ≥ ‘ 1 ) |
| 59 | 55 58 | sstri | ⊢ ( 2 ... ( 𝑃 − 1 ) ) ⊆ ( ℤ≥ ‘ 1 ) |
| 60 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 61 | 59 60 | sseqtrri | ⊢ ( 2 ... ( 𝑃 − 1 ) ) ⊆ ℕ |
| 62 | 61 | sseli | ⊢ ( 𝑧 ∈ ( 2 ... ( 𝑃 − 1 ) ) → 𝑧 ∈ ℕ ) |
| 63 | 62 | pm4.71ri | ⊢ ( 𝑧 ∈ ( 2 ... ( 𝑃 − 1 ) ) ↔ ( 𝑧 ∈ ℕ ∧ 𝑧 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ) |
| 64 | 54 63 | bitr4di | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∥ 𝑃 ) → ( ( 𝑧 ∈ ℕ ∧ ¬ ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ↔ 𝑧 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ) |
| 65 | 64 | notbid | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∥ 𝑃 ) → ( ¬ ( 𝑧 ∈ ℕ ∧ ¬ ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ↔ ¬ 𝑧 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ) |
| 66 | 2 65 | bitrid | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∥ 𝑃 ) → ( ( 𝑧 ∈ ℕ → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ↔ ¬ 𝑧 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ) |
| 67 | 66 | pm5.74da | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝑧 ∥ 𝑃 → ( 𝑧 ∈ ℕ → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) ↔ ( 𝑧 ∥ 𝑃 → ¬ 𝑧 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ) ) |
| 68 | bi2.04 | ⊢ ( ( 𝑧 ∥ 𝑃 → ( 𝑧 ∈ ℕ → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) ↔ ( 𝑧 ∈ ℕ → ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) ) | |
| 69 | con2b | ⊢ ( ( 𝑧 ∥ 𝑃 → ¬ 𝑧 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ↔ ( 𝑧 ∈ ( 2 ... ( 𝑃 − 1 ) ) → ¬ 𝑧 ∥ 𝑃 ) ) | |
| 70 | 67 68 69 | 3bitr3g | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝑧 ∈ ℕ → ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) ↔ ( 𝑧 ∈ ( 2 ... ( 𝑃 − 1 ) ) → ¬ 𝑧 ∥ 𝑃 ) ) ) |
| 71 | 70 | ralbidv2 | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ∀ 𝑧 ∈ ℕ ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ↔ ∀ 𝑧 ∈ ( 2 ... ( 𝑃 − 1 ) ) ¬ 𝑧 ∥ 𝑃 ) ) |
| 72 | 71 | pm5.32i | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ℕ ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ( 2 ... ( 𝑃 − 1 ) ) ¬ 𝑧 ∥ 𝑃 ) ) |
| 73 | 1 72 | bitri | ⊢ ( 𝑃 ∈ ℙ ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ( 2 ... ( 𝑃 − 1 ) ) ¬ 𝑧 ∥ 𝑃 ) ) |