This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A structure product of topological spaces is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdstopn.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| prdstopn.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | ||
| prdstopn.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| prdstps.r | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ TopSp ) | ||
| Assertion | prdstps | ⊢ ( 𝜑 → 𝑌 ∈ TopSp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdstopn.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| 2 | prdstopn.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | |
| 3 | prdstopn.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 4 | prdstps.r | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ TopSp ) | |
| 5 | 4 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑥 ) ∈ TopSp ) |
| 6 | eqid | ⊢ ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) = ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) | |
| 7 | eqid | ⊢ ( TopOpen ‘ ( 𝑅 ‘ 𝑥 ) ) = ( TopOpen ‘ ( 𝑅 ‘ 𝑥 ) ) | |
| 8 | 6 7 | istps | ⊢ ( ( 𝑅 ‘ 𝑥 ) ∈ TopSp ↔ ( TopOpen ‘ ( 𝑅 ‘ 𝑥 ) ) ∈ ( TopOn ‘ ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) |
| 9 | 5 8 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( TopOpen ‘ ( 𝑅 ‘ 𝑥 ) ) ∈ ( TopOn ‘ ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) |
| 10 | 9 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ( TopOpen ‘ ( 𝑅 ‘ 𝑥 ) ) ∈ ( TopOn ‘ ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) |
| 11 | eqid | ⊢ ( ∏t ‘ ( 𝑥 ∈ 𝐼 ↦ ( TopOpen ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) = ( ∏t ‘ ( 𝑥 ∈ 𝐼 ↦ ( TopOpen ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) | |
| 12 | 11 | pttopon | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ ∀ 𝑥 ∈ 𝐼 ( TopOpen ‘ ( 𝑅 ‘ 𝑥 ) ) ∈ ( TopOn ‘ ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) → ( ∏t ‘ ( 𝑥 ∈ 𝐼 ↦ ( TopOpen ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) ∈ ( TopOn ‘ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) |
| 13 | 3 10 12 | syl2anc | ⊢ ( 𝜑 → ( ∏t ‘ ( 𝑥 ∈ 𝐼 ↦ ( TopOpen ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) ∈ ( TopOn ‘ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) |
| 14 | 4 3 | fexd | ⊢ ( 𝜑 → 𝑅 ∈ V ) |
| 15 | eqid | ⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) | |
| 16 | 4 | fdmd | ⊢ ( 𝜑 → dom 𝑅 = 𝐼 ) |
| 17 | eqid | ⊢ ( TopSet ‘ 𝑌 ) = ( TopSet ‘ 𝑌 ) | |
| 18 | 1 2 14 15 16 17 | prdstset | ⊢ ( 𝜑 → ( TopSet ‘ 𝑌 ) = ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ) |
| 19 | topnfn | ⊢ TopOpen Fn V | |
| 20 | dffn2 | ⊢ ( TopOpen Fn V ↔ TopOpen : V ⟶ V ) | |
| 21 | 19 20 | mpbi | ⊢ TopOpen : V ⟶ V |
| 22 | ssv | ⊢ TopSp ⊆ V | |
| 23 | fss | ⊢ ( ( 𝑅 : 𝐼 ⟶ TopSp ∧ TopSp ⊆ V ) → 𝑅 : 𝐼 ⟶ V ) | |
| 24 | 4 22 23 | sylancl | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ V ) |
| 25 | fcompt | ⊢ ( ( TopOpen : V ⟶ V ∧ 𝑅 : 𝐼 ⟶ V ) → ( TopOpen ∘ 𝑅 ) = ( 𝑥 ∈ 𝐼 ↦ ( TopOpen ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) | |
| 26 | 21 24 25 | sylancr | ⊢ ( 𝜑 → ( TopOpen ∘ 𝑅 ) = ( 𝑥 ∈ 𝐼 ↦ ( TopOpen ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) |
| 27 | 26 | fveq2d | ⊢ ( 𝜑 → ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) = ( ∏t ‘ ( 𝑥 ∈ 𝐼 ↦ ( TopOpen ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) ) |
| 28 | 18 27 | eqtrd | ⊢ ( 𝜑 → ( TopSet ‘ 𝑌 ) = ( ∏t ‘ ( 𝑥 ∈ 𝐼 ↦ ( TopOpen ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) ) |
| 29 | 1 2 14 15 16 | prdsbas | ⊢ ( 𝜑 → ( Base ‘ 𝑌 ) = X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 30 | 29 | fveq2d | ⊢ ( 𝜑 → ( TopOn ‘ ( Base ‘ 𝑌 ) ) = ( TopOn ‘ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) |
| 31 | 13 28 30 | 3eltr4d | ⊢ ( 𝜑 → ( TopSet ‘ 𝑌 ) ∈ ( TopOn ‘ ( Base ‘ 𝑌 ) ) ) |
| 32 | 15 17 | tsettps | ⊢ ( ( TopSet ‘ 𝑌 ) ∈ ( TopOn ‘ ( Base ‘ 𝑌 ) ) → 𝑌 ∈ TopSp ) |
| 33 | 31 32 | syl | ⊢ ( 𝜑 → 𝑌 ∈ TopSp ) |