This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015) (Proof shortened by AV, 2-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | plusffval.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| plusffval.2 | ⊢ + = ( +g ‘ 𝐺 ) | ||
| plusffval.3 | ⊢ ⨣ = ( +𝑓 ‘ 𝐺 ) | ||
| Assertion | plusffval | ⊢ ⨣ = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 + 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | plusffval.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | plusffval.2 | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | plusffval.3 | ⊢ ⨣ = ( +𝑓 ‘ 𝐺 ) | |
| 4 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = ( Base ‘ 𝐺 ) ) | |
| 5 | 4 1 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = 𝐵 ) |
| 6 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( +g ‘ 𝑔 ) = ( +g ‘ 𝐺 ) ) | |
| 7 | 6 2 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ( +g ‘ 𝑔 ) = + ) |
| 8 | 7 | oveqd | ⊢ ( 𝑔 = 𝐺 → ( 𝑥 ( +g ‘ 𝑔 ) 𝑦 ) = ( 𝑥 + 𝑦 ) ) |
| 9 | 5 5 8 | mpoeq123dv | ⊢ ( 𝑔 = 𝐺 → ( 𝑥 ∈ ( Base ‘ 𝑔 ) , 𝑦 ∈ ( Base ‘ 𝑔 ) ↦ ( 𝑥 ( +g ‘ 𝑔 ) 𝑦 ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 + 𝑦 ) ) ) |
| 10 | df-plusf | ⊢ +𝑓 = ( 𝑔 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑔 ) , 𝑦 ∈ ( Base ‘ 𝑔 ) ↦ ( 𝑥 ( +g ‘ 𝑔 ) 𝑦 ) ) ) | |
| 11 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 12 | 2 | fvexi | ⊢ + ∈ V |
| 13 | 12 | rnex | ⊢ ran + ∈ V |
| 14 | p0ex | ⊢ { ∅ } ∈ V | |
| 15 | 13 14 | unex | ⊢ ( ran + ∪ { ∅ } ) ∈ V |
| 16 | df-ov | ⊢ ( 𝑥 + 𝑦 ) = ( + ‘ 〈 𝑥 , 𝑦 〉 ) | |
| 17 | fvrn0 | ⊢ ( + ‘ 〈 𝑥 , 𝑦 〉 ) ∈ ( ran + ∪ { ∅ } ) | |
| 18 | 16 17 | eqeltri | ⊢ ( 𝑥 + 𝑦 ) ∈ ( ran + ∪ { ∅ } ) |
| 19 | 18 | rgen2w | ⊢ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) ∈ ( ran + ∪ { ∅ } ) |
| 20 | 11 11 15 19 | mpoexw | ⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 + 𝑦 ) ) ∈ V |
| 21 | 9 10 20 | fvmpt | ⊢ ( 𝐺 ∈ V → ( +𝑓 ‘ 𝐺 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 + 𝑦 ) ) ) |
| 22 | fvprc | ⊢ ( ¬ 𝐺 ∈ V → ( +𝑓 ‘ 𝐺 ) = ∅ ) | |
| 23 | fvprc | ⊢ ( ¬ 𝐺 ∈ V → ( Base ‘ 𝐺 ) = ∅ ) | |
| 24 | 1 23 | eqtrid | ⊢ ( ¬ 𝐺 ∈ V → 𝐵 = ∅ ) |
| 25 | 24 | olcd | ⊢ ( ¬ 𝐺 ∈ V → ( 𝐵 = ∅ ∨ 𝐵 = ∅ ) ) |
| 26 | 0mpo0 | ⊢ ( ( 𝐵 = ∅ ∨ 𝐵 = ∅ ) → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 + 𝑦 ) ) = ∅ ) | |
| 27 | 25 26 | syl | ⊢ ( ¬ 𝐺 ∈ V → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 + 𝑦 ) ) = ∅ ) |
| 28 | 22 27 | eqtr4d | ⊢ ( ¬ 𝐺 ∈ V → ( +𝑓 ‘ 𝐺 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 + 𝑦 ) ) ) |
| 29 | 21 28 | pm2.61i | ⊢ ( +𝑓 ‘ 𝐺 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 + 𝑦 ) ) |
| 30 | 3 29 | eqtri | ⊢ ⨣ = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 + 𝑦 ) ) |