This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of a family of topological groups is a topological group. (Contributed by Mario Carneiro, 22-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdstgpd.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| prdstgpd.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| prdstgpd.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | ||
| prdstgpd.r | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ TopGrp ) | ||
| Assertion | prdstgpd | ⊢ ( 𝜑 → 𝑌 ∈ TopGrp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdstgpd.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| 2 | prdstgpd.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 3 | prdstgpd.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | |
| 4 | prdstgpd.r | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ TopGrp ) | |
| 5 | tgpgrp | ⊢ ( 𝑥 ∈ TopGrp → 𝑥 ∈ Grp ) | |
| 6 | 5 | ssriv | ⊢ TopGrp ⊆ Grp |
| 7 | fss | ⊢ ( ( 𝑅 : 𝐼 ⟶ TopGrp ∧ TopGrp ⊆ Grp ) → 𝑅 : 𝐼 ⟶ Grp ) | |
| 8 | 4 6 7 | sylancl | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Grp ) |
| 9 | 1 2 3 8 | prdsgrpd | ⊢ ( 𝜑 → 𝑌 ∈ Grp ) |
| 10 | tgptmd | ⊢ ( 𝑥 ∈ TopGrp → 𝑥 ∈ TopMnd ) | |
| 11 | 10 | ssriv | ⊢ TopGrp ⊆ TopMnd |
| 12 | fss | ⊢ ( ( 𝑅 : 𝐼 ⟶ TopGrp ∧ TopGrp ⊆ TopMnd ) → 𝑅 : 𝐼 ⟶ TopMnd ) | |
| 13 | 4 11 12 | sylancl | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ TopMnd ) |
| 14 | 1 2 3 13 | prdstmdd | ⊢ ( 𝜑 → 𝑌 ∈ TopMnd ) |
| 15 | eqid | ⊢ ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) = ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) | |
| 16 | eqid | ⊢ ( TopOpen ‘ 𝑌 ) = ( TopOpen ‘ 𝑌 ) | |
| 17 | eqid | ⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) | |
| 18 | 16 17 | tmdtopon | ⊢ ( 𝑌 ∈ TopMnd → ( TopOpen ‘ 𝑌 ) ∈ ( TopOn ‘ ( Base ‘ 𝑌 ) ) ) |
| 19 | 14 18 | syl | ⊢ ( 𝜑 → ( TopOpen ‘ 𝑌 ) ∈ ( TopOn ‘ ( Base ‘ 𝑌 ) ) ) |
| 20 | topnfn | ⊢ TopOpen Fn V | |
| 21 | 4 | ffnd | ⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) |
| 22 | dffn2 | ⊢ ( 𝑅 Fn 𝐼 ↔ 𝑅 : 𝐼 ⟶ V ) | |
| 23 | 21 22 | sylib | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ V ) |
| 24 | fnfco | ⊢ ( ( TopOpen Fn V ∧ 𝑅 : 𝐼 ⟶ V ) → ( TopOpen ∘ 𝑅 ) Fn 𝐼 ) | |
| 25 | 20 23 24 | sylancr | ⊢ ( 𝜑 → ( TopOpen ∘ 𝑅 ) Fn 𝐼 ) |
| 26 | fvco3 | ⊢ ( ( 𝑅 : 𝐼 ⟶ TopGrp ∧ 𝑦 ∈ 𝐼 ) → ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) = ( TopOpen ‘ ( 𝑅 ‘ 𝑦 ) ) ) | |
| 27 | 4 26 | sylan | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) = ( TopOpen ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 28 | 4 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑦 ) ∈ TopGrp ) |
| 29 | eqid | ⊢ ( TopOpen ‘ ( 𝑅 ‘ 𝑦 ) ) = ( TopOpen ‘ ( 𝑅 ‘ 𝑦 ) ) | |
| 30 | eqid | ⊢ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) = ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) | |
| 31 | 29 30 | tgptopon | ⊢ ( ( 𝑅 ‘ 𝑦 ) ∈ TopGrp → ( TopOpen ‘ ( 𝑅 ‘ 𝑦 ) ) ∈ ( TopOn ‘ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) |
| 32 | topontop | ⊢ ( ( TopOpen ‘ ( 𝑅 ‘ 𝑦 ) ) ∈ ( TopOn ‘ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) → ( TopOpen ‘ ( 𝑅 ‘ 𝑦 ) ) ∈ Top ) | |
| 33 | 28 31 32 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( TopOpen ‘ ( 𝑅 ‘ 𝑦 ) ) ∈ Top ) |
| 34 | 27 33 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∈ Top ) |
| 35 | 34 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐼 ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∈ Top ) |
| 36 | ffnfv | ⊢ ( ( TopOpen ∘ 𝑅 ) : 𝐼 ⟶ Top ↔ ( ( TopOpen ∘ 𝑅 ) Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∈ Top ) ) | |
| 37 | 25 35 36 | sylanbrc | ⊢ ( 𝜑 → ( TopOpen ∘ 𝑅 ) : 𝐼 ⟶ Top ) |
| 38 | 19 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( TopOpen ‘ 𝑌 ) ∈ ( TopOn ‘ ( Base ‘ 𝑌 ) ) ) |
| 39 | 1 3 2 21 16 | prdstopn | ⊢ ( 𝜑 → ( TopOpen ‘ 𝑌 ) = ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ) |
| 40 | 39 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( TopOpen ‘ 𝑌 ) = ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ) |
| 41 | 40 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) = ( TopOpen ‘ 𝑌 ) ) |
| 42 | 41 38 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ∈ ( TopOn ‘ ( Base ‘ 𝑌 ) ) ) |
| 43 | toponuni | ⊢ ( ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ∈ ( TopOn ‘ ( Base ‘ 𝑌 ) ) → ( Base ‘ 𝑌 ) = ∪ ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ) | |
| 44 | mpteq1 | ⊢ ( ( Base ‘ 𝑌 ) = ∪ ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑌 ) ↦ ( 𝑥 ‘ 𝑦 ) ) = ( 𝑥 ∈ ∪ ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ↦ ( 𝑥 ‘ 𝑦 ) ) ) | |
| 45 | 42 43 44 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( 𝑥 ∈ ( Base ‘ 𝑌 ) ↦ ( 𝑥 ‘ 𝑦 ) ) = ( 𝑥 ∈ ∪ ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ↦ ( 𝑥 ‘ 𝑦 ) ) ) |
| 46 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → 𝐼 ∈ 𝑊 ) |
| 47 | 37 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( TopOpen ∘ 𝑅 ) : 𝐼 ⟶ Top ) |
| 48 | simpr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → 𝑦 ∈ 𝐼 ) | |
| 49 | eqid | ⊢ ∪ ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) = ∪ ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) | |
| 50 | 49 15 | ptpjcn | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ ( TopOpen ∘ 𝑅 ) : 𝐼 ⟶ Top ∧ 𝑦 ∈ 𝐼 ) → ( 𝑥 ∈ ∪ ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ↦ ( 𝑥 ‘ 𝑦 ) ) ∈ ( ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) Cn ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ) |
| 51 | 46 47 48 50 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( 𝑥 ∈ ∪ ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ↦ ( 𝑥 ‘ 𝑦 ) ) ∈ ( ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) Cn ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ) |
| 52 | 45 51 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( 𝑥 ∈ ( Base ‘ 𝑌 ) ↦ ( 𝑥 ‘ 𝑦 ) ) ∈ ( ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) Cn ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ) |
| 53 | 41 27 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) Cn ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) = ( ( TopOpen ‘ 𝑌 ) Cn ( TopOpen ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) |
| 54 | 52 53 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( 𝑥 ∈ ( Base ‘ 𝑌 ) ↦ ( 𝑥 ‘ 𝑦 ) ) ∈ ( ( TopOpen ‘ 𝑌 ) Cn ( TopOpen ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) |
| 55 | eqid | ⊢ ( invg ‘ ( 𝑅 ‘ 𝑦 ) ) = ( invg ‘ ( 𝑅 ‘ 𝑦 ) ) | |
| 56 | 29 55 | tgpinv | ⊢ ( ( 𝑅 ‘ 𝑦 ) ∈ TopGrp → ( invg ‘ ( 𝑅 ‘ 𝑦 ) ) ∈ ( ( TopOpen ‘ ( 𝑅 ‘ 𝑦 ) ) Cn ( TopOpen ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) |
| 57 | 28 56 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( invg ‘ ( 𝑅 ‘ 𝑦 ) ) ∈ ( ( TopOpen ‘ ( 𝑅 ‘ 𝑦 ) ) Cn ( TopOpen ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) |
| 58 | 38 54 57 | cnmpt11f | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( 𝑥 ∈ ( Base ‘ 𝑌 ) ↦ ( ( invg ‘ ( 𝑅 ‘ 𝑦 ) ) ‘ ( 𝑥 ‘ 𝑦 ) ) ) ∈ ( ( TopOpen ‘ 𝑌 ) Cn ( TopOpen ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) |
| 59 | 27 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( ( TopOpen ‘ 𝑌 ) Cn ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) = ( ( TopOpen ‘ 𝑌 ) Cn ( TopOpen ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) |
| 60 | 58 59 | eleqtrrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( 𝑥 ∈ ( Base ‘ 𝑌 ) ↦ ( ( invg ‘ ( 𝑅 ‘ 𝑦 ) ) ‘ ( 𝑥 ‘ 𝑦 ) ) ) ∈ ( ( TopOpen ‘ 𝑌 ) Cn ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ) |
| 61 | 15 19 2 37 60 | ptcn | ⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝑌 ) ↦ ( 𝑦 ∈ 𝐼 ↦ ( ( invg ‘ ( 𝑅 ‘ 𝑦 ) ) ‘ ( 𝑥 ‘ 𝑦 ) ) ) ) ∈ ( ( TopOpen ‘ 𝑌 ) Cn ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ) ) |
| 62 | eqid | ⊢ ( invg ‘ 𝑌 ) = ( invg ‘ 𝑌 ) | |
| 63 | 17 62 | grpinvf | ⊢ ( 𝑌 ∈ Grp → ( invg ‘ 𝑌 ) : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑌 ) ) |
| 64 | 9 63 | syl | ⊢ ( 𝜑 → ( invg ‘ 𝑌 ) : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑌 ) ) |
| 65 | 64 | feqmptd | ⊢ ( 𝜑 → ( invg ‘ 𝑌 ) = ( 𝑥 ∈ ( Base ‘ 𝑌 ) ↦ ( ( invg ‘ 𝑌 ) ‘ 𝑥 ) ) ) |
| 66 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑌 ) ) → 𝐼 ∈ 𝑊 ) |
| 67 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑌 ) ) → 𝑆 ∈ 𝑉 ) |
| 68 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑌 ) ) → 𝑅 : 𝐼 ⟶ Grp ) |
| 69 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑌 ) ) → 𝑥 ∈ ( Base ‘ 𝑌 ) ) | |
| 70 | 1 66 67 68 17 62 69 | prdsinvgd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑌 ) ) → ( ( invg ‘ 𝑌 ) ‘ 𝑥 ) = ( 𝑦 ∈ 𝐼 ↦ ( ( invg ‘ ( 𝑅 ‘ 𝑦 ) ) ‘ ( 𝑥 ‘ 𝑦 ) ) ) ) |
| 71 | 70 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝑌 ) ↦ ( ( invg ‘ 𝑌 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ ( Base ‘ 𝑌 ) ↦ ( 𝑦 ∈ 𝐼 ↦ ( ( invg ‘ ( 𝑅 ‘ 𝑦 ) ) ‘ ( 𝑥 ‘ 𝑦 ) ) ) ) ) |
| 72 | 65 71 | eqtrd | ⊢ ( 𝜑 → ( invg ‘ 𝑌 ) = ( 𝑥 ∈ ( Base ‘ 𝑌 ) ↦ ( 𝑦 ∈ 𝐼 ↦ ( ( invg ‘ ( 𝑅 ‘ 𝑦 ) ) ‘ ( 𝑥 ‘ 𝑦 ) ) ) ) ) |
| 73 | 39 | oveq2d | ⊢ ( 𝜑 → ( ( TopOpen ‘ 𝑌 ) Cn ( TopOpen ‘ 𝑌 ) ) = ( ( TopOpen ‘ 𝑌 ) Cn ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ) ) |
| 74 | 61 72 73 | 3eltr4d | ⊢ ( 𝜑 → ( invg ‘ 𝑌 ) ∈ ( ( TopOpen ‘ 𝑌 ) Cn ( TopOpen ‘ 𝑌 ) ) ) |
| 75 | 16 62 | istgp | ⊢ ( 𝑌 ∈ TopGrp ↔ ( 𝑌 ∈ Grp ∧ 𝑌 ∈ TopMnd ∧ ( invg ‘ 𝑌 ) ∈ ( ( TopOpen ‘ 𝑌 ) Cn ( TopOpen ‘ 𝑌 ) ) ) ) |
| 76 | 9 14 74 75 | syl3anbrc | ⊢ ( 𝜑 → 𝑌 ∈ TopGrp ) |