This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of a family of topological monoids is a topological monoid. (Contributed by Mario Carneiro, 22-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdstmdd.y | |- Y = ( S Xs_ R ) |
|
| prdstmdd.i | |- ( ph -> I e. W ) |
||
| prdstmdd.s | |- ( ph -> S e. V ) |
||
| prdstmdd.r | |- ( ph -> R : I --> TopMnd ) |
||
| Assertion | prdstmdd | |- ( ph -> Y e. TopMnd ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdstmdd.y | |- Y = ( S Xs_ R ) |
|
| 2 | prdstmdd.i | |- ( ph -> I e. W ) |
|
| 3 | prdstmdd.s | |- ( ph -> S e. V ) |
|
| 4 | prdstmdd.r | |- ( ph -> R : I --> TopMnd ) |
|
| 5 | tmdmnd | |- ( x e. TopMnd -> x e. Mnd ) |
|
| 6 | 5 | ssriv | |- TopMnd C_ Mnd |
| 7 | fss | |- ( ( R : I --> TopMnd /\ TopMnd C_ Mnd ) -> R : I --> Mnd ) |
|
| 8 | 4 6 7 | sylancl | |- ( ph -> R : I --> Mnd ) |
| 9 | 1 2 3 8 | prdsmndd | |- ( ph -> Y e. Mnd ) |
| 10 | tmdtps | |- ( x e. TopMnd -> x e. TopSp ) |
|
| 11 | 10 | ssriv | |- TopMnd C_ TopSp |
| 12 | fss | |- ( ( R : I --> TopMnd /\ TopMnd C_ TopSp ) -> R : I --> TopSp ) |
|
| 13 | 4 11 12 | sylancl | |- ( ph -> R : I --> TopSp ) |
| 14 | 1 3 2 13 | prdstps | |- ( ph -> Y e. TopSp ) |
| 15 | eqid | |- ( Base ` Y ) = ( Base ` Y ) |
|
| 16 | 3 | 3ad2ant1 | |- ( ( ph /\ f e. ( Base ` Y ) /\ g e. ( Base ` Y ) ) -> S e. V ) |
| 17 | 2 | 3ad2ant1 | |- ( ( ph /\ f e. ( Base ` Y ) /\ g e. ( Base ` Y ) ) -> I e. W ) |
| 18 | 4 | ffnd | |- ( ph -> R Fn I ) |
| 19 | 18 | 3ad2ant1 | |- ( ( ph /\ f e. ( Base ` Y ) /\ g e. ( Base ` Y ) ) -> R Fn I ) |
| 20 | simp2 | |- ( ( ph /\ f e. ( Base ` Y ) /\ g e. ( Base ` Y ) ) -> f e. ( Base ` Y ) ) |
|
| 21 | simp3 | |- ( ( ph /\ f e. ( Base ` Y ) /\ g e. ( Base ` Y ) ) -> g e. ( Base ` Y ) ) |
|
| 22 | eqid | |- ( +g ` Y ) = ( +g ` Y ) |
|
| 23 | 1 15 16 17 19 20 21 22 | prdsplusgval | |- ( ( ph /\ f e. ( Base ` Y ) /\ g e. ( Base ` Y ) ) -> ( f ( +g ` Y ) g ) = ( k e. I |-> ( ( f ` k ) ( +g ` ( R ` k ) ) ( g ` k ) ) ) ) |
| 24 | 23 | mpoeq3dva | |- ( ph -> ( f e. ( Base ` Y ) , g e. ( Base ` Y ) |-> ( f ( +g ` Y ) g ) ) = ( f e. ( Base ` Y ) , g e. ( Base ` Y ) |-> ( k e. I |-> ( ( f ` k ) ( +g ` ( R ` k ) ) ( g ` k ) ) ) ) ) |
| 25 | eqid | |- ( +f ` Y ) = ( +f ` Y ) |
|
| 26 | 15 22 25 | plusffval | |- ( +f ` Y ) = ( f e. ( Base ` Y ) , g e. ( Base ` Y ) |-> ( f ( +g ` Y ) g ) ) |
| 27 | vex | |- f e. _V |
|
| 28 | vex | |- g e. _V |
|
| 29 | 27 28 | op1std | |- ( z = <. f , g >. -> ( 1st ` z ) = f ) |
| 30 | 29 | fveq1d | |- ( z = <. f , g >. -> ( ( 1st ` z ) ` k ) = ( f ` k ) ) |
| 31 | 27 28 | op2ndd | |- ( z = <. f , g >. -> ( 2nd ` z ) = g ) |
| 32 | 31 | fveq1d | |- ( z = <. f , g >. -> ( ( 2nd ` z ) ` k ) = ( g ` k ) ) |
| 33 | 30 32 | oveq12d | |- ( z = <. f , g >. -> ( ( ( 1st ` z ) ` k ) ( +g ` ( R ` k ) ) ( ( 2nd ` z ) ` k ) ) = ( ( f ` k ) ( +g ` ( R ` k ) ) ( g ` k ) ) ) |
| 34 | 33 | mpteq2dv | |- ( z = <. f , g >. -> ( k e. I |-> ( ( ( 1st ` z ) ` k ) ( +g ` ( R ` k ) ) ( ( 2nd ` z ) ` k ) ) ) = ( k e. I |-> ( ( f ` k ) ( +g ` ( R ` k ) ) ( g ` k ) ) ) ) |
| 35 | 34 | mpompt | |- ( z e. ( ( Base ` Y ) X. ( Base ` Y ) ) |-> ( k e. I |-> ( ( ( 1st ` z ) ` k ) ( +g ` ( R ` k ) ) ( ( 2nd ` z ) ` k ) ) ) ) = ( f e. ( Base ` Y ) , g e. ( Base ` Y ) |-> ( k e. I |-> ( ( f ` k ) ( +g ` ( R ` k ) ) ( g ` k ) ) ) ) |
| 36 | 24 26 35 | 3eqtr4g | |- ( ph -> ( +f ` Y ) = ( z e. ( ( Base ` Y ) X. ( Base ` Y ) ) |-> ( k e. I |-> ( ( ( 1st ` z ) ` k ) ( +g ` ( R ` k ) ) ( ( 2nd ` z ) ` k ) ) ) ) ) |
| 37 | eqid | |- ( Xt_ ` ( TopOpen o. R ) ) = ( Xt_ ` ( TopOpen o. R ) ) |
|
| 38 | eqid | |- ( TopOpen ` Y ) = ( TopOpen ` Y ) |
|
| 39 | 15 38 | istps | |- ( Y e. TopSp <-> ( TopOpen ` Y ) e. ( TopOn ` ( Base ` Y ) ) ) |
| 40 | 14 39 | sylib | |- ( ph -> ( TopOpen ` Y ) e. ( TopOn ` ( Base ` Y ) ) ) |
| 41 | txtopon | |- ( ( ( TopOpen ` Y ) e. ( TopOn ` ( Base ` Y ) ) /\ ( TopOpen ` Y ) e. ( TopOn ` ( Base ` Y ) ) ) -> ( ( TopOpen ` Y ) tX ( TopOpen ` Y ) ) e. ( TopOn ` ( ( Base ` Y ) X. ( Base ` Y ) ) ) ) |
|
| 42 | 40 40 41 | syl2anc | |- ( ph -> ( ( TopOpen ` Y ) tX ( TopOpen ` Y ) ) e. ( TopOn ` ( ( Base ` Y ) X. ( Base ` Y ) ) ) ) |
| 43 | topnfn | |- TopOpen Fn _V |
|
| 44 | ssv | |- TopSp C_ _V |
|
| 45 | fnssres | |- ( ( TopOpen Fn _V /\ TopSp C_ _V ) -> ( TopOpen |` TopSp ) Fn TopSp ) |
|
| 46 | 43 44 45 | mp2an | |- ( TopOpen |` TopSp ) Fn TopSp |
| 47 | fvres | |- ( x e. TopSp -> ( ( TopOpen |` TopSp ) ` x ) = ( TopOpen ` x ) ) |
|
| 48 | eqid | |- ( TopOpen ` x ) = ( TopOpen ` x ) |
|
| 49 | 48 | tpstop | |- ( x e. TopSp -> ( TopOpen ` x ) e. Top ) |
| 50 | 47 49 | eqeltrd | |- ( x e. TopSp -> ( ( TopOpen |` TopSp ) ` x ) e. Top ) |
| 51 | 50 | rgen | |- A. x e. TopSp ( ( TopOpen |` TopSp ) ` x ) e. Top |
| 52 | ffnfv | |- ( ( TopOpen |` TopSp ) : TopSp --> Top <-> ( ( TopOpen |` TopSp ) Fn TopSp /\ A. x e. TopSp ( ( TopOpen |` TopSp ) ` x ) e. Top ) ) |
|
| 53 | 46 51 52 | mpbir2an | |- ( TopOpen |` TopSp ) : TopSp --> Top |
| 54 | fco2 | |- ( ( ( TopOpen |` TopSp ) : TopSp --> Top /\ R : I --> TopSp ) -> ( TopOpen o. R ) : I --> Top ) |
|
| 55 | 53 13 54 | sylancr | |- ( ph -> ( TopOpen o. R ) : I --> Top ) |
| 56 | 33 | mpompt | |- ( z e. ( ( Base ` Y ) X. ( Base ` Y ) ) |-> ( ( ( 1st ` z ) ` k ) ( +g ` ( R ` k ) ) ( ( 2nd ` z ) ` k ) ) ) = ( f e. ( Base ` Y ) , g e. ( Base ` Y ) |-> ( ( f ` k ) ( +g ` ( R ` k ) ) ( g ` k ) ) ) |
| 57 | eqid | |- ( TopOpen ` ( R ` k ) ) = ( TopOpen ` ( R ` k ) ) |
|
| 58 | eqid | |- ( +g ` ( R ` k ) ) = ( +g ` ( R ` k ) ) |
|
| 59 | 4 | ffvelcdmda | |- ( ( ph /\ k e. I ) -> ( R ` k ) e. TopMnd ) |
| 60 | 40 | adantr | |- ( ( ph /\ k e. I ) -> ( TopOpen ` Y ) e. ( TopOn ` ( Base ` Y ) ) ) |
| 61 | 60 60 | cnmpt1st | |- ( ( ph /\ k e. I ) -> ( f e. ( Base ` Y ) , g e. ( Base ` Y ) |-> f ) e. ( ( ( TopOpen ` Y ) tX ( TopOpen ` Y ) ) Cn ( TopOpen ` Y ) ) ) |
| 62 | 1 3 2 18 38 | prdstopn | |- ( ph -> ( TopOpen ` Y ) = ( Xt_ ` ( TopOpen o. R ) ) ) |
| 63 | 62 | adantr | |- ( ( ph /\ k e. I ) -> ( TopOpen ` Y ) = ( Xt_ ` ( TopOpen o. R ) ) ) |
| 64 | 63 60 | eqeltrrd | |- ( ( ph /\ k e. I ) -> ( Xt_ ` ( TopOpen o. R ) ) e. ( TopOn ` ( Base ` Y ) ) ) |
| 65 | toponuni | |- ( ( Xt_ ` ( TopOpen o. R ) ) e. ( TopOn ` ( Base ` Y ) ) -> ( Base ` Y ) = U. ( Xt_ ` ( TopOpen o. R ) ) ) |
|
| 66 | 64 65 | syl | |- ( ( ph /\ k e. I ) -> ( Base ` Y ) = U. ( Xt_ ` ( TopOpen o. R ) ) ) |
| 67 | 66 | mpteq1d | |- ( ( ph /\ k e. I ) -> ( x e. ( Base ` Y ) |-> ( x ` k ) ) = ( x e. U. ( Xt_ ` ( TopOpen o. R ) ) |-> ( x ` k ) ) ) |
| 68 | 2 | adantr | |- ( ( ph /\ k e. I ) -> I e. W ) |
| 69 | 55 | adantr | |- ( ( ph /\ k e. I ) -> ( TopOpen o. R ) : I --> Top ) |
| 70 | simpr | |- ( ( ph /\ k e. I ) -> k e. I ) |
|
| 71 | eqid | |- U. ( Xt_ ` ( TopOpen o. R ) ) = U. ( Xt_ ` ( TopOpen o. R ) ) |
|
| 72 | 71 37 | ptpjcn | |- ( ( I e. W /\ ( TopOpen o. R ) : I --> Top /\ k e. I ) -> ( x e. U. ( Xt_ ` ( TopOpen o. R ) ) |-> ( x ` k ) ) e. ( ( Xt_ ` ( TopOpen o. R ) ) Cn ( ( TopOpen o. R ) ` k ) ) ) |
| 73 | 68 69 70 72 | syl3anc | |- ( ( ph /\ k e. I ) -> ( x e. U. ( Xt_ ` ( TopOpen o. R ) ) |-> ( x ` k ) ) e. ( ( Xt_ ` ( TopOpen o. R ) ) Cn ( ( TopOpen o. R ) ` k ) ) ) |
| 74 | 67 73 | eqeltrd | |- ( ( ph /\ k e. I ) -> ( x e. ( Base ` Y ) |-> ( x ` k ) ) e. ( ( Xt_ ` ( TopOpen o. R ) ) Cn ( ( TopOpen o. R ) ` k ) ) ) |
| 75 | 63 | eqcomd | |- ( ( ph /\ k e. I ) -> ( Xt_ ` ( TopOpen o. R ) ) = ( TopOpen ` Y ) ) |
| 76 | fvco3 | |- ( ( R : I --> TopMnd /\ k e. I ) -> ( ( TopOpen o. R ) ` k ) = ( TopOpen ` ( R ` k ) ) ) |
|
| 77 | 4 76 | sylan | |- ( ( ph /\ k e. I ) -> ( ( TopOpen o. R ) ` k ) = ( TopOpen ` ( R ` k ) ) ) |
| 78 | 75 77 | oveq12d | |- ( ( ph /\ k e. I ) -> ( ( Xt_ ` ( TopOpen o. R ) ) Cn ( ( TopOpen o. R ) ` k ) ) = ( ( TopOpen ` Y ) Cn ( TopOpen ` ( R ` k ) ) ) ) |
| 79 | 74 78 | eleqtrd | |- ( ( ph /\ k e. I ) -> ( x e. ( Base ` Y ) |-> ( x ` k ) ) e. ( ( TopOpen ` Y ) Cn ( TopOpen ` ( R ` k ) ) ) ) |
| 80 | fveq1 | |- ( x = f -> ( x ` k ) = ( f ` k ) ) |
|
| 81 | 60 60 61 60 79 80 | cnmpt21 | |- ( ( ph /\ k e. I ) -> ( f e. ( Base ` Y ) , g e. ( Base ` Y ) |-> ( f ` k ) ) e. ( ( ( TopOpen ` Y ) tX ( TopOpen ` Y ) ) Cn ( TopOpen ` ( R ` k ) ) ) ) |
| 82 | 60 60 | cnmpt2nd | |- ( ( ph /\ k e. I ) -> ( f e. ( Base ` Y ) , g e. ( Base ` Y ) |-> g ) e. ( ( ( TopOpen ` Y ) tX ( TopOpen ` Y ) ) Cn ( TopOpen ` Y ) ) ) |
| 83 | fveq1 | |- ( x = g -> ( x ` k ) = ( g ` k ) ) |
|
| 84 | 60 60 82 60 79 83 | cnmpt21 | |- ( ( ph /\ k e. I ) -> ( f e. ( Base ` Y ) , g e. ( Base ` Y ) |-> ( g ` k ) ) e. ( ( ( TopOpen ` Y ) tX ( TopOpen ` Y ) ) Cn ( TopOpen ` ( R ` k ) ) ) ) |
| 85 | 57 58 59 60 60 81 84 | cnmpt2plusg | |- ( ( ph /\ k e. I ) -> ( f e. ( Base ` Y ) , g e. ( Base ` Y ) |-> ( ( f ` k ) ( +g ` ( R ` k ) ) ( g ` k ) ) ) e. ( ( ( TopOpen ` Y ) tX ( TopOpen ` Y ) ) Cn ( TopOpen ` ( R ` k ) ) ) ) |
| 86 | 77 | oveq2d | |- ( ( ph /\ k e. I ) -> ( ( ( TopOpen ` Y ) tX ( TopOpen ` Y ) ) Cn ( ( TopOpen o. R ) ` k ) ) = ( ( ( TopOpen ` Y ) tX ( TopOpen ` Y ) ) Cn ( TopOpen ` ( R ` k ) ) ) ) |
| 87 | 85 86 | eleqtrrd | |- ( ( ph /\ k e. I ) -> ( f e. ( Base ` Y ) , g e. ( Base ` Y ) |-> ( ( f ` k ) ( +g ` ( R ` k ) ) ( g ` k ) ) ) e. ( ( ( TopOpen ` Y ) tX ( TopOpen ` Y ) ) Cn ( ( TopOpen o. R ) ` k ) ) ) |
| 88 | 56 87 | eqeltrid | |- ( ( ph /\ k e. I ) -> ( z e. ( ( Base ` Y ) X. ( Base ` Y ) ) |-> ( ( ( 1st ` z ) ` k ) ( +g ` ( R ` k ) ) ( ( 2nd ` z ) ` k ) ) ) e. ( ( ( TopOpen ` Y ) tX ( TopOpen ` Y ) ) Cn ( ( TopOpen o. R ) ` k ) ) ) |
| 89 | 37 42 2 55 88 | ptcn | |- ( ph -> ( z e. ( ( Base ` Y ) X. ( Base ` Y ) ) |-> ( k e. I |-> ( ( ( 1st ` z ) ` k ) ( +g ` ( R ` k ) ) ( ( 2nd ` z ) ` k ) ) ) ) e. ( ( ( TopOpen ` Y ) tX ( TopOpen ` Y ) ) Cn ( Xt_ ` ( TopOpen o. R ) ) ) ) |
| 90 | 36 89 | eqeltrd | |- ( ph -> ( +f ` Y ) e. ( ( ( TopOpen ` Y ) tX ( TopOpen ` Y ) ) Cn ( Xt_ ` ( TopOpen o. R ) ) ) ) |
| 91 | 62 | oveq2d | |- ( ph -> ( ( ( TopOpen ` Y ) tX ( TopOpen ` Y ) ) Cn ( TopOpen ` Y ) ) = ( ( ( TopOpen ` Y ) tX ( TopOpen ` Y ) ) Cn ( Xt_ ` ( TopOpen o. R ) ) ) ) |
| 92 | 90 91 | eleqtrrd | |- ( ph -> ( +f ` Y ) e. ( ( ( TopOpen ` Y ) tX ( TopOpen ` Y ) ) Cn ( TopOpen ` Y ) ) ) |
| 93 | 25 38 | istmd | |- ( Y e. TopMnd <-> ( Y e. Mnd /\ Y e. TopSp /\ ( +f ` Y ) e. ( ( ( TopOpen ` Y ) tX ( TopOpen ` Y ) ) Cn ( TopOpen ` Y ) ) ) ) |
| 94 | 9 14 92 93 | syl3anbrc | |- ( ph -> Y e. TopMnd ) |