This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of a family of monoids is a monoid. (Contributed by Stefan O'Rear, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsmndd.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| prdsmndd.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| prdsmndd.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | ||
| prdsmndd.r | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Mnd ) | ||
| Assertion | prdsmndd | ⊢ ( 𝜑 → 𝑌 ∈ Mnd ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsmndd.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| 2 | prdsmndd.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 3 | prdsmndd.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | |
| 4 | prdsmndd.r | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Mnd ) | |
| 5 | eqidd | ⊢ ( 𝜑 → ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) ) | |
| 6 | eqidd | ⊢ ( 𝜑 → ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) ) | |
| 7 | eqid | ⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) | |
| 8 | eqid | ⊢ ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) | |
| 9 | 3 | elexd | ⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 10 | 9 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑆 ∈ V ) |
| 11 | 2 | elexd | ⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 12 | 11 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ) → 𝐼 ∈ V ) |
| 13 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑅 : 𝐼 ⟶ Mnd ) |
| 14 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑎 ∈ ( Base ‘ 𝑌 ) ) | |
| 15 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑏 ∈ ( Base ‘ 𝑌 ) ) | |
| 16 | 1 7 8 10 12 13 14 15 | prdsplusgcl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ∈ ( Base ‘ 𝑌 ) ) |
| 17 | 16 | 3impb | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) → ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ∈ ( Base ‘ 𝑌 ) ) |
| 18 | 4 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑦 ) ∈ Mnd ) |
| 19 | 18 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑦 ) ∈ Mnd ) |
| 20 | 9 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑆 ∈ V ) |
| 21 | 11 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝐼 ∈ V ) |
| 22 | 4 | ffnd | ⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) |
| 23 | 22 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑅 Fn 𝐼 ) |
| 24 | simplr1 | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑎 ∈ ( Base ‘ 𝑌 ) ) | |
| 25 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑦 ∈ 𝐼 ) | |
| 26 | 1 7 20 21 23 24 25 | prdsbasprj | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑎 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 27 | simplr2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑏 ∈ ( Base ‘ 𝑌 ) ) | |
| 28 | 1 7 20 21 23 27 25 | prdsbasprj | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑏 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 29 | simplr3 | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑐 ∈ ( Base ‘ 𝑌 ) ) | |
| 30 | 1 7 20 21 23 29 25 | prdsbasprj | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑐 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 31 | eqid | ⊢ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) = ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) | |
| 32 | eqid | ⊢ ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) = ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) | |
| 33 | 31 32 | mndass | ⊢ ( ( ( 𝑅 ‘ 𝑦 ) ∈ Mnd ∧ ( ( 𝑎 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ∧ ( 𝑏 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ∧ ( 𝑐 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) → ( ( ( 𝑎 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 ‘ 𝑦 ) ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) = ( ( 𝑎 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) |
| 34 | 19 26 28 30 33 | syl13anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( ( 𝑎 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 ‘ 𝑦 ) ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) = ( ( 𝑎 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) |
| 35 | 1 7 20 21 23 24 27 8 25 | prdsplusgfval | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ‘ 𝑦 ) = ( ( 𝑎 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 ‘ 𝑦 ) ) ) |
| 36 | 35 | oveq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) = ( ( ( 𝑎 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 ‘ 𝑦 ) ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) |
| 37 | 1 7 20 21 23 27 29 8 25 | prdsplusgfval | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) = ( ( 𝑏 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) |
| 38 | 37 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑎 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) = ( ( 𝑎 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) |
| 39 | 34 36 38 | 3eqtr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) = ( ( 𝑎 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) |
| 40 | 39 | mpteq2dva | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑦 ∈ 𝐼 ↦ ( ( ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) ) |
| 41 | 9 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑆 ∈ V ) |
| 42 | 11 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝐼 ∈ V ) |
| 43 | 22 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑅 Fn 𝐼 ) |
| 44 | 16 | 3adantr3 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ∈ ( Base ‘ 𝑌 ) ) |
| 45 | simpr3 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑐 ∈ ( Base ‘ 𝑌 ) ) | |
| 46 | 1 7 41 42 43 44 45 8 | prdsplusgval | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ( +g ‘ 𝑌 ) 𝑐 ) = ( 𝑦 ∈ 𝐼 ↦ ( ( ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) |
| 47 | simpr1 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑎 ∈ ( Base ‘ 𝑌 ) ) | |
| 48 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑅 : 𝐼 ⟶ Mnd ) |
| 49 | simpr2 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑏 ∈ ( Base ‘ 𝑌 ) ) | |
| 50 | 1 7 8 41 42 48 49 45 | prdsplusgcl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ∈ ( Base ‘ 𝑌 ) ) |
| 51 | 1 7 41 42 43 47 50 8 | prdsplusgval | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑎 ( +g ‘ 𝑌 ) ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ) = ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) ) |
| 52 | 40 46 51 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ( +g ‘ 𝑌 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝑌 ) ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ) ) |
| 53 | eqid | ⊢ ( 0g ∘ 𝑅 ) = ( 0g ∘ 𝑅 ) | |
| 54 | 1 7 8 9 11 4 53 | prdsidlem | ⊢ ( 𝜑 → ( ( 0g ∘ 𝑅 ) ∈ ( Base ‘ 𝑌 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑌 ) ( ( ( 0g ∘ 𝑅 ) ( +g ‘ 𝑌 ) 𝑎 ) = 𝑎 ∧ ( 𝑎 ( +g ‘ 𝑌 ) ( 0g ∘ 𝑅 ) ) = 𝑎 ) ) ) |
| 55 | 54 | simpld | ⊢ ( 𝜑 → ( 0g ∘ 𝑅 ) ∈ ( Base ‘ 𝑌 ) ) |
| 56 | 54 | simprd | ⊢ ( 𝜑 → ∀ 𝑎 ∈ ( Base ‘ 𝑌 ) ( ( ( 0g ∘ 𝑅 ) ( +g ‘ 𝑌 ) 𝑎 ) = 𝑎 ∧ ( 𝑎 ( +g ‘ 𝑌 ) ( 0g ∘ 𝑅 ) ) = 𝑎 ) ) |
| 57 | 56 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → ( ( ( 0g ∘ 𝑅 ) ( +g ‘ 𝑌 ) 𝑎 ) = 𝑎 ∧ ( 𝑎 ( +g ‘ 𝑌 ) ( 0g ∘ 𝑅 ) ) = 𝑎 ) ) |
| 58 | 57 | simpld | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → ( ( 0g ∘ 𝑅 ) ( +g ‘ 𝑌 ) 𝑎 ) = 𝑎 ) |
| 59 | 57 | simprd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → ( 𝑎 ( +g ‘ 𝑌 ) ( 0g ∘ 𝑅 ) ) = 𝑎 ) |
| 60 | 5 6 17 52 55 58 59 | ismndd | ⊢ ( 𝜑 → 𝑌 ∈ Mnd ) |