This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The prime count of a GCD is the minimum of the prime counts of the arguments. (Contributed by Mario Carneiro, 3-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pcgcd1 | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) → ( 𝑃 pCnt ( 𝐴 gcd 𝐵 ) ) = ( 𝑃 pCnt 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝐵 = 0 → ( 𝐴 gcd 𝐵 ) = ( 𝐴 gcd 0 ) ) | |
| 2 | 1 | oveq2d | ⊢ ( 𝐵 = 0 → ( 𝑃 pCnt ( 𝐴 gcd 𝐵 ) ) = ( 𝑃 pCnt ( 𝐴 gcd 0 ) ) ) |
| 3 | 2 | eqeq1d | ⊢ ( 𝐵 = 0 → ( ( 𝑃 pCnt ( 𝐴 gcd 𝐵 ) ) = ( 𝑃 pCnt 𝐴 ) ↔ ( 𝑃 pCnt ( 𝐴 gcd 0 ) ) = ( 𝑃 pCnt 𝐴 ) ) ) |
| 4 | simpl1 | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → 𝑃 ∈ ℙ ) | |
| 5 | simp2 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐴 ∈ ℤ ) | |
| 6 | 5 | adantr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → 𝐴 ∈ ℤ ) |
| 7 | simpl3 | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → 𝐵 ∈ ℤ ) | |
| 8 | simprr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → 𝐵 ≠ 0 ) | |
| 9 | simpr | ⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → 𝐵 = 0 ) | |
| 10 | 9 | necon3ai | ⊢ ( 𝐵 ≠ 0 → ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) |
| 11 | 8 10 | syl | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) |
| 12 | gcdn0cl | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) | |
| 13 | 6 7 11 12 | syl21anc | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) |
| 14 | 13 | nnzd | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℤ ) |
| 15 | gcddvds | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) | |
| 16 | 6 7 15 | syl2anc | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) |
| 17 | 16 | simpld | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ) |
| 18 | pcdvdstr | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ) ) → ( 𝑃 pCnt ( 𝐴 gcd 𝐵 ) ) ≤ ( 𝑃 pCnt 𝐴 ) ) | |
| 19 | 4 14 6 17 18 | syl13anc | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt ( 𝐴 gcd 𝐵 ) ) ≤ ( 𝑃 pCnt 𝐴 ) ) |
| 20 | zq | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℚ ) | |
| 21 | 6 20 | syl | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → 𝐴 ∈ ℚ ) |
| 22 | pcxcl | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ ) → ( 𝑃 pCnt 𝐴 ) ∈ ℝ* ) | |
| 23 | 4 21 22 | syl2anc | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt 𝐴 ) ∈ ℝ* ) |
| 24 | pczcl | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt 𝐵 ) ∈ ℕ0 ) | |
| 25 | 4 7 8 24 | syl12anc | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt 𝐵 ) ∈ ℕ0 ) |
| 26 | 25 | nn0red | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt 𝐵 ) ∈ ℝ ) |
| 27 | pcge0 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → 0 ≤ ( 𝑃 pCnt 𝐴 ) ) | |
| 28 | 4 6 27 | syl2anc | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → 0 ≤ ( 𝑃 pCnt 𝐴 ) ) |
| 29 | ge0gtmnf | ⊢ ( ( ( 𝑃 pCnt 𝐴 ) ∈ ℝ* ∧ 0 ≤ ( 𝑃 pCnt 𝐴 ) ) → -∞ < ( 𝑃 pCnt 𝐴 ) ) | |
| 30 | 23 28 29 | syl2anc | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → -∞ < ( 𝑃 pCnt 𝐴 ) ) |
| 31 | simprl | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) | |
| 32 | xrre | ⊢ ( ( ( ( 𝑃 pCnt 𝐴 ) ∈ ℝ* ∧ ( 𝑃 pCnt 𝐵 ) ∈ ℝ ) ∧ ( -∞ < ( 𝑃 pCnt 𝐴 ) ∧ ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) ) → ( 𝑃 pCnt 𝐴 ) ∈ ℝ ) | |
| 33 | 23 26 30 31 32 | syl22anc | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt 𝐴 ) ∈ ℝ ) |
| 34 | pnfnre | ⊢ +∞ ∉ ℝ | |
| 35 | 34 | neli | ⊢ ¬ +∞ ∈ ℝ |
| 36 | pc0 | ⊢ ( 𝑃 ∈ ℙ → ( 𝑃 pCnt 0 ) = +∞ ) | |
| 37 | 4 36 | syl | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt 0 ) = +∞ ) |
| 38 | 37 | eleq1d | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( ( 𝑃 pCnt 0 ) ∈ ℝ ↔ +∞ ∈ ℝ ) ) |
| 39 | 35 38 | mtbiri | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ¬ ( 𝑃 pCnt 0 ) ∈ ℝ ) |
| 40 | oveq2 | ⊢ ( 𝐴 = 0 → ( 𝑃 pCnt 𝐴 ) = ( 𝑃 pCnt 0 ) ) | |
| 41 | 40 | eleq1d | ⊢ ( 𝐴 = 0 → ( ( 𝑃 pCnt 𝐴 ) ∈ ℝ ↔ ( 𝑃 pCnt 0 ) ∈ ℝ ) ) |
| 42 | 41 | notbid | ⊢ ( 𝐴 = 0 → ( ¬ ( 𝑃 pCnt 𝐴 ) ∈ ℝ ↔ ¬ ( 𝑃 pCnt 0 ) ∈ ℝ ) ) |
| 43 | 39 42 | syl5ibrcom | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 = 0 → ¬ ( 𝑃 pCnt 𝐴 ) ∈ ℝ ) ) |
| 44 | 43 | necon2ad | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( ( 𝑃 pCnt 𝐴 ) ∈ ℝ → 𝐴 ≠ 0 ) ) |
| 45 | 33 44 | mpd | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → 𝐴 ≠ 0 ) |
| 46 | pczdvds | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ 𝐴 ) | |
| 47 | 4 6 45 46 | syl12anc | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ 𝐴 ) |
| 48 | pczcl | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ) → ( 𝑃 pCnt 𝐴 ) ∈ ℕ0 ) | |
| 49 | 4 6 45 48 | syl12anc | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt 𝐴 ) ∈ ℕ0 ) |
| 50 | pcdvdsb | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐵 ∈ ℤ ∧ ( 𝑃 pCnt 𝐴 ) ∈ ℕ0 ) → ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ↔ ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ 𝐵 ) ) | |
| 51 | 4 7 49 50 | syl3anc | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ↔ ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ 𝐵 ) ) |
| 52 | 31 51 | mpbid | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ 𝐵 ) |
| 53 | prmnn | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) | |
| 54 | 4 53 | syl | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → 𝑃 ∈ ℕ ) |
| 55 | 54 49 | nnexpcld | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∈ ℕ ) |
| 56 | 55 | nnzd | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∈ ℤ ) |
| 57 | dvdsgcd | ⊢ ( ( ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ 𝐴 ∧ ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ 𝐵 ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ ( 𝐴 gcd 𝐵 ) ) ) | |
| 58 | 56 6 7 57 | syl3anc | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( ( ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ 𝐴 ∧ ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ 𝐵 ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ ( 𝐴 gcd 𝐵 ) ) ) |
| 59 | 47 52 58 | mp2and | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ ( 𝐴 gcd 𝐵 ) ) |
| 60 | pcdvdsb | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ ( 𝑃 pCnt 𝐴 ) ∈ ℕ0 ) → ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt ( 𝐴 gcd 𝐵 ) ) ↔ ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ ( 𝐴 gcd 𝐵 ) ) ) | |
| 61 | 4 14 49 60 | syl3anc | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt ( 𝐴 gcd 𝐵 ) ) ↔ ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ ( 𝐴 gcd 𝐵 ) ) ) |
| 62 | 59 61 | mpbird | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt ( 𝐴 gcd 𝐵 ) ) ) |
| 63 | 4 13 | pccld | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt ( 𝐴 gcd 𝐵 ) ) ∈ ℕ0 ) |
| 64 | 63 | nn0red | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt ( 𝐴 gcd 𝐵 ) ) ∈ ℝ ) |
| 65 | 64 33 | letri3d | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( ( 𝑃 pCnt ( 𝐴 gcd 𝐵 ) ) = ( 𝑃 pCnt 𝐴 ) ↔ ( ( 𝑃 pCnt ( 𝐴 gcd 𝐵 ) ) ≤ ( 𝑃 pCnt 𝐴 ) ∧ ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt ( 𝐴 gcd 𝐵 ) ) ) ) ) |
| 66 | 19 62 65 | mpbir2and | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt ( 𝐴 gcd 𝐵 ) ) = ( 𝑃 pCnt 𝐴 ) ) |
| 67 | 66 | anassrs | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) ∧ 𝐵 ≠ 0 ) → ( 𝑃 pCnt ( 𝐴 gcd 𝐵 ) ) = ( 𝑃 pCnt 𝐴 ) ) |
| 68 | gcdid0 | ⊢ ( 𝐴 ∈ ℤ → ( 𝐴 gcd 0 ) = ( abs ‘ 𝐴 ) ) | |
| 69 | 5 68 | syl | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 0 ) = ( abs ‘ 𝐴 ) ) |
| 70 | 69 | oveq2d | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝑃 pCnt ( 𝐴 gcd 0 ) ) = ( 𝑃 pCnt ( abs ‘ 𝐴 ) ) ) |
| 71 | pcabs | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ ) → ( 𝑃 pCnt ( abs ‘ 𝐴 ) ) = ( 𝑃 pCnt 𝐴 ) ) | |
| 72 | 20 71 | sylan2 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( 𝑃 pCnt ( abs ‘ 𝐴 ) ) = ( 𝑃 pCnt 𝐴 ) ) |
| 73 | 72 | 3adant3 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝑃 pCnt ( abs ‘ 𝐴 ) ) = ( 𝑃 pCnt 𝐴 ) ) |
| 74 | 70 73 | eqtrd | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝑃 pCnt ( 𝐴 gcd 0 ) ) = ( 𝑃 pCnt 𝐴 ) ) |
| 75 | 74 | adantr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) → ( 𝑃 pCnt ( 𝐴 gcd 0 ) ) = ( 𝑃 pCnt 𝐴 ) ) |
| 76 | 3 67 75 | pm2.61ne | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) → ( 𝑃 pCnt ( 𝐴 gcd 𝐵 ) ) = ( 𝑃 pCnt 𝐴 ) ) |