This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The prime count of a GCD is the minimum of the prime counts of the arguments. (Contributed by Mario Carneiro, 3-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pcgcd1 | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( P pCnt A ) <_ ( P pCnt B ) ) -> ( P pCnt ( A gcd B ) ) = ( P pCnt A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( B = 0 -> ( A gcd B ) = ( A gcd 0 ) ) |
|
| 2 | 1 | oveq2d | |- ( B = 0 -> ( P pCnt ( A gcd B ) ) = ( P pCnt ( A gcd 0 ) ) ) |
| 3 | 2 | eqeq1d | |- ( B = 0 -> ( ( P pCnt ( A gcd B ) ) = ( P pCnt A ) <-> ( P pCnt ( A gcd 0 ) ) = ( P pCnt A ) ) ) |
| 4 | simpl1 | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( ( P pCnt A ) <_ ( P pCnt B ) /\ B =/= 0 ) ) -> P e. Prime ) |
|
| 5 | simp2 | |- ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) -> A e. ZZ ) |
|
| 6 | 5 | adantr | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( ( P pCnt A ) <_ ( P pCnt B ) /\ B =/= 0 ) ) -> A e. ZZ ) |
| 7 | simpl3 | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( ( P pCnt A ) <_ ( P pCnt B ) /\ B =/= 0 ) ) -> B e. ZZ ) |
|
| 8 | simprr | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( ( P pCnt A ) <_ ( P pCnt B ) /\ B =/= 0 ) ) -> B =/= 0 ) |
|
| 9 | simpr | |- ( ( A = 0 /\ B = 0 ) -> B = 0 ) |
|
| 10 | 9 | necon3ai | |- ( B =/= 0 -> -. ( A = 0 /\ B = 0 ) ) |
| 11 | 8 10 | syl | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( ( P pCnt A ) <_ ( P pCnt B ) /\ B =/= 0 ) ) -> -. ( A = 0 /\ B = 0 ) ) |
| 12 | gcdn0cl | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( A gcd B ) e. NN ) |
|
| 13 | 6 7 11 12 | syl21anc | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( ( P pCnt A ) <_ ( P pCnt B ) /\ B =/= 0 ) ) -> ( A gcd B ) e. NN ) |
| 14 | 13 | nnzd | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( ( P pCnt A ) <_ ( P pCnt B ) /\ B =/= 0 ) ) -> ( A gcd B ) e. ZZ ) |
| 15 | gcddvds | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
|
| 16 | 6 7 15 | syl2anc | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( ( P pCnt A ) <_ ( P pCnt B ) /\ B =/= 0 ) ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
| 17 | 16 | simpld | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( ( P pCnt A ) <_ ( P pCnt B ) /\ B =/= 0 ) ) -> ( A gcd B ) || A ) |
| 18 | pcdvdstr | |- ( ( P e. Prime /\ ( ( A gcd B ) e. ZZ /\ A e. ZZ /\ ( A gcd B ) || A ) ) -> ( P pCnt ( A gcd B ) ) <_ ( P pCnt A ) ) |
|
| 19 | 4 14 6 17 18 | syl13anc | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( ( P pCnt A ) <_ ( P pCnt B ) /\ B =/= 0 ) ) -> ( P pCnt ( A gcd B ) ) <_ ( P pCnt A ) ) |
| 20 | zq | |- ( A e. ZZ -> A e. QQ ) |
|
| 21 | 6 20 | syl | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( ( P pCnt A ) <_ ( P pCnt B ) /\ B =/= 0 ) ) -> A e. QQ ) |
| 22 | pcxcl | |- ( ( P e. Prime /\ A e. QQ ) -> ( P pCnt A ) e. RR* ) |
|
| 23 | 4 21 22 | syl2anc | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( ( P pCnt A ) <_ ( P pCnt B ) /\ B =/= 0 ) ) -> ( P pCnt A ) e. RR* ) |
| 24 | pczcl | |- ( ( P e. Prime /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( P pCnt B ) e. NN0 ) |
|
| 25 | 4 7 8 24 | syl12anc | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( ( P pCnt A ) <_ ( P pCnt B ) /\ B =/= 0 ) ) -> ( P pCnt B ) e. NN0 ) |
| 26 | 25 | nn0red | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( ( P pCnt A ) <_ ( P pCnt B ) /\ B =/= 0 ) ) -> ( P pCnt B ) e. RR ) |
| 27 | pcge0 | |- ( ( P e. Prime /\ A e. ZZ ) -> 0 <_ ( P pCnt A ) ) |
|
| 28 | 4 6 27 | syl2anc | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( ( P pCnt A ) <_ ( P pCnt B ) /\ B =/= 0 ) ) -> 0 <_ ( P pCnt A ) ) |
| 29 | ge0gtmnf | |- ( ( ( P pCnt A ) e. RR* /\ 0 <_ ( P pCnt A ) ) -> -oo < ( P pCnt A ) ) |
|
| 30 | 23 28 29 | syl2anc | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( ( P pCnt A ) <_ ( P pCnt B ) /\ B =/= 0 ) ) -> -oo < ( P pCnt A ) ) |
| 31 | simprl | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( ( P pCnt A ) <_ ( P pCnt B ) /\ B =/= 0 ) ) -> ( P pCnt A ) <_ ( P pCnt B ) ) |
|
| 32 | xrre | |- ( ( ( ( P pCnt A ) e. RR* /\ ( P pCnt B ) e. RR ) /\ ( -oo < ( P pCnt A ) /\ ( P pCnt A ) <_ ( P pCnt B ) ) ) -> ( P pCnt A ) e. RR ) |
|
| 33 | 23 26 30 31 32 | syl22anc | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( ( P pCnt A ) <_ ( P pCnt B ) /\ B =/= 0 ) ) -> ( P pCnt A ) e. RR ) |
| 34 | pnfnre | |- +oo e/ RR |
|
| 35 | 34 | neli | |- -. +oo e. RR |
| 36 | pc0 | |- ( P e. Prime -> ( P pCnt 0 ) = +oo ) |
|
| 37 | 4 36 | syl | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( ( P pCnt A ) <_ ( P pCnt B ) /\ B =/= 0 ) ) -> ( P pCnt 0 ) = +oo ) |
| 38 | 37 | eleq1d | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( ( P pCnt A ) <_ ( P pCnt B ) /\ B =/= 0 ) ) -> ( ( P pCnt 0 ) e. RR <-> +oo e. RR ) ) |
| 39 | 35 38 | mtbiri | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( ( P pCnt A ) <_ ( P pCnt B ) /\ B =/= 0 ) ) -> -. ( P pCnt 0 ) e. RR ) |
| 40 | oveq2 | |- ( A = 0 -> ( P pCnt A ) = ( P pCnt 0 ) ) |
|
| 41 | 40 | eleq1d | |- ( A = 0 -> ( ( P pCnt A ) e. RR <-> ( P pCnt 0 ) e. RR ) ) |
| 42 | 41 | notbid | |- ( A = 0 -> ( -. ( P pCnt A ) e. RR <-> -. ( P pCnt 0 ) e. RR ) ) |
| 43 | 39 42 | syl5ibrcom | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( ( P pCnt A ) <_ ( P pCnt B ) /\ B =/= 0 ) ) -> ( A = 0 -> -. ( P pCnt A ) e. RR ) ) |
| 44 | 43 | necon2ad | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( ( P pCnt A ) <_ ( P pCnt B ) /\ B =/= 0 ) ) -> ( ( P pCnt A ) e. RR -> A =/= 0 ) ) |
| 45 | 33 44 | mpd | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( ( P pCnt A ) <_ ( P pCnt B ) /\ B =/= 0 ) ) -> A =/= 0 ) |
| 46 | pczdvds | |- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) ) -> ( P ^ ( P pCnt A ) ) || A ) |
|
| 47 | 4 6 45 46 | syl12anc | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( ( P pCnt A ) <_ ( P pCnt B ) /\ B =/= 0 ) ) -> ( P ^ ( P pCnt A ) ) || A ) |
| 48 | pczcl | |- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) ) -> ( P pCnt A ) e. NN0 ) |
|
| 49 | 4 6 45 48 | syl12anc | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( ( P pCnt A ) <_ ( P pCnt B ) /\ B =/= 0 ) ) -> ( P pCnt A ) e. NN0 ) |
| 50 | pcdvdsb | |- ( ( P e. Prime /\ B e. ZZ /\ ( P pCnt A ) e. NN0 ) -> ( ( P pCnt A ) <_ ( P pCnt B ) <-> ( P ^ ( P pCnt A ) ) || B ) ) |
|
| 51 | 4 7 49 50 | syl3anc | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( ( P pCnt A ) <_ ( P pCnt B ) /\ B =/= 0 ) ) -> ( ( P pCnt A ) <_ ( P pCnt B ) <-> ( P ^ ( P pCnt A ) ) || B ) ) |
| 52 | 31 51 | mpbid | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( ( P pCnt A ) <_ ( P pCnt B ) /\ B =/= 0 ) ) -> ( P ^ ( P pCnt A ) ) || B ) |
| 53 | prmnn | |- ( P e. Prime -> P e. NN ) |
|
| 54 | 4 53 | syl | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( ( P pCnt A ) <_ ( P pCnt B ) /\ B =/= 0 ) ) -> P e. NN ) |
| 55 | 54 49 | nnexpcld | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( ( P pCnt A ) <_ ( P pCnt B ) /\ B =/= 0 ) ) -> ( P ^ ( P pCnt A ) ) e. NN ) |
| 56 | 55 | nnzd | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( ( P pCnt A ) <_ ( P pCnt B ) /\ B =/= 0 ) ) -> ( P ^ ( P pCnt A ) ) e. ZZ ) |
| 57 | dvdsgcd | |- ( ( ( P ^ ( P pCnt A ) ) e. ZZ /\ A e. ZZ /\ B e. ZZ ) -> ( ( ( P ^ ( P pCnt A ) ) || A /\ ( P ^ ( P pCnt A ) ) || B ) -> ( P ^ ( P pCnt A ) ) || ( A gcd B ) ) ) |
|
| 58 | 56 6 7 57 | syl3anc | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( ( P pCnt A ) <_ ( P pCnt B ) /\ B =/= 0 ) ) -> ( ( ( P ^ ( P pCnt A ) ) || A /\ ( P ^ ( P pCnt A ) ) || B ) -> ( P ^ ( P pCnt A ) ) || ( A gcd B ) ) ) |
| 59 | 47 52 58 | mp2and | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( ( P pCnt A ) <_ ( P pCnt B ) /\ B =/= 0 ) ) -> ( P ^ ( P pCnt A ) ) || ( A gcd B ) ) |
| 60 | pcdvdsb | |- ( ( P e. Prime /\ ( A gcd B ) e. ZZ /\ ( P pCnt A ) e. NN0 ) -> ( ( P pCnt A ) <_ ( P pCnt ( A gcd B ) ) <-> ( P ^ ( P pCnt A ) ) || ( A gcd B ) ) ) |
|
| 61 | 4 14 49 60 | syl3anc | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( ( P pCnt A ) <_ ( P pCnt B ) /\ B =/= 0 ) ) -> ( ( P pCnt A ) <_ ( P pCnt ( A gcd B ) ) <-> ( P ^ ( P pCnt A ) ) || ( A gcd B ) ) ) |
| 62 | 59 61 | mpbird | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( ( P pCnt A ) <_ ( P pCnt B ) /\ B =/= 0 ) ) -> ( P pCnt A ) <_ ( P pCnt ( A gcd B ) ) ) |
| 63 | 4 13 | pccld | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( ( P pCnt A ) <_ ( P pCnt B ) /\ B =/= 0 ) ) -> ( P pCnt ( A gcd B ) ) e. NN0 ) |
| 64 | 63 | nn0red | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( ( P pCnt A ) <_ ( P pCnt B ) /\ B =/= 0 ) ) -> ( P pCnt ( A gcd B ) ) e. RR ) |
| 65 | 64 33 | letri3d | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( ( P pCnt A ) <_ ( P pCnt B ) /\ B =/= 0 ) ) -> ( ( P pCnt ( A gcd B ) ) = ( P pCnt A ) <-> ( ( P pCnt ( A gcd B ) ) <_ ( P pCnt A ) /\ ( P pCnt A ) <_ ( P pCnt ( A gcd B ) ) ) ) ) |
| 66 | 19 62 65 | mpbir2and | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( ( P pCnt A ) <_ ( P pCnt B ) /\ B =/= 0 ) ) -> ( P pCnt ( A gcd B ) ) = ( P pCnt A ) ) |
| 67 | 66 | anassrs | |- ( ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( P pCnt A ) <_ ( P pCnt B ) ) /\ B =/= 0 ) -> ( P pCnt ( A gcd B ) ) = ( P pCnt A ) ) |
| 68 | gcdid0 | |- ( A e. ZZ -> ( A gcd 0 ) = ( abs ` A ) ) |
|
| 69 | 5 68 | syl | |- ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) -> ( A gcd 0 ) = ( abs ` A ) ) |
| 70 | 69 | oveq2d | |- ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) -> ( P pCnt ( A gcd 0 ) ) = ( P pCnt ( abs ` A ) ) ) |
| 71 | pcabs | |- ( ( P e. Prime /\ A e. QQ ) -> ( P pCnt ( abs ` A ) ) = ( P pCnt A ) ) |
|
| 72 | 20 71 | sylan2 | |- ( ( P e. Prime /\ A e. ZZ ) -> ( P pCnt ( abs ` A ) ) = ( P pCnt A ) ) |
| 73 | 72 | 3adant3 | |- ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) -> ( P pCnt ( abs ` A ) ) = ( P pCnt A ) ) |
| 74 | 70 73 | eqtrd | |- ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) -> ( P pCnt ( A gcd 0 ) ) = ( P pCnt A ) ) |
| 75 | 74 | adantr | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( P pCnt A ) <_ ( P pCnt B ) ) -> ( P pCnt ( A gcd 0 ) ) = ( P pCnt A ) ) |
| 76 | 3 67 75 | pm2.61ne | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( P pCnt A ) <_ ( P pCnt B ) ) -> ( P pCnt ( A gcd B ) ) = ( P pCnt A ) ) |