This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An inequality for the prime count of a sum. This is the source of the ultrametric inequality for the p-adic metric. (Contributed by Mario Carneiro, 9-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pcadd.1 | ⊢ ( 𝜑 → 𝑃 ∈ ℙ ) | |
| pcadd.2 | ⊢ ( 𝜑 → 𝐴 ∈ ℚ ) | ||
| pcadd.3 | ⊢ ( 𝜑 → 𝐵 ∈ ℚ ) | ||
| pcadd.4 | ⊢ ( 𝜑 → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) | ||
| Assertion | pcadd | ⊢ ( 𝜑 → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pcadd.1 | ⊢ ( 𝜑 → 𝑃 ∈ ℙ ) | |
| 2 | pcadd.2 | ⊢ ( 𝜑 → 𝐴 ∈ ℚ ) | |
| 3 | pcadd.3 | ⊢ ( 𝜑 → 𝐵 ∈ ℚ ) | |
| 4 | pcadd.4 | ⊢ ( 𝜑 → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) | |
| 5 | elq | ⊢ ( 𝐴 ∈ ℚ ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) | |
| 6 | 2 5 | sylib | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) |
| 7 | elq | ⊢ ( 𝐵 ∈ ℚ ↔ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) | |
| 8 | 3 7 | sylib | ⊢ ( 𝜑 → ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) |
| 9 | pcxcl | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ ) → ( 𝑃 pCnt 𝐴 ) ∈ ℝ* ) | |
| 10 | 1 2 9 | syl2anc | ⊢ ( 𝜑 → ( 𝑃 pCnt 𝐴 ) ∈ ℝ* ) |
| 11 | 10 | xrleidd | ⊢ ( 𝜑 → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐴 ) ) |
| 12 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝐵 = 0 ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐴 ) ) |
| 13 | oveq2 | ⊢ ( 𝐵 = 0 → ( 𝐴 + 𝐵 ) = ( 𝐴 + 0 ) ) | |
| 14 | qcn | ⊢ ( 𝐴 ∈ ℚ → 𝐴 ∈ ℂ ) | |
| 15 | 2 14 | syl | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 16 | 15 | addridd | ⊢ ( 𝜑 → ( 𝐴 + 0 ) = 𝐴 ) |
| 17 | 13 16 | sylan9eqr | ⊢ ( ( 𝜑 ∧ 𝐵 = 0 ) → ( 𝐴 + 𝐵 ) = 𝐴 ) |
| 18 | 17 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝐵 = 0 ) → ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) = ( 𝑃 pCnt 𝐴 ) ) |
| 19 | 12 18 | breqtrrd | ⊢ ( ( 𝜑 ∧ 𝐵 = 0 ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) |
| 20 | 19 | a1d | ⊢ ( ( 𝜑 ∧ 𝐵 = 0 ) → ( ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ∧ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) ) |
| 21 | reeanv | ⊢ ( ∃ 𝑥 ∈ ℤ ∃ 𝑧 ∈ ℤ ( ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ∧ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) ↔ ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ∧ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) ) | |
| 22 | reeanv | ⊢ ( ∃ 𝑦 ∈ ℕ ∃ 𝑤 ∈ ℕ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ↔ ( ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ∧ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) ) | |
| 23 | 1 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑃 ∈ ℙ ) |
| 24 | prmnn | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) | |
| 25 | 23 24 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑃 ∈ ℕ ) |
| 26 | simplrl | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑥 ∈ ℤ ) | |
| 27 | simprrl | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝐴 = ( 𝑥 / 𝑦 ) ) | |
| 28 | pc0 | ⊢ ( 𝑃 ∈ ℙ → ( 𝑃 pCnt 0 ) = +∞ ) | |
| 29 | 23 28 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 0 ) = +∞ ) |
| 30 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝐵 ∈ ℚ ) |
| 31 | simpllr | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝐵 ≠ 0 ) | |
| 32 | pcqcl | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt 𝐵 ) ∈ ℤ ) | |
| 33 | 23 30 31 32 | syl12anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝐵 ) ∈ ℤ ) |
| 34 | 33 | zred | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝐵 ) ∈ ℝ ) |
| 35 | ltpnf | ⊢ ( ( 𝑃 pCnt 𝐵 ) ∈ ℝ → ( 𝑃 pCnt 𝐵 ) < +∞ ) | |
| 36 | rexr | ⊢ ( ( 𝑃 pCnt 𝐵 ) ∈ ℝ → ( 𝑃 pCnt 𝐵 ) ∈ ℝ* ) | |
| 37 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 38 | xrltnle | ⊢ ( ( ( 𝑃 pCnt 𝐵 ) ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( 𝑃 pCnt 𝐵 ) < +∞ ↔ ¬ +∞ ≤ ( 𝑃 pCnt 𝐵 ) ) ) | |
| 39 | 36 37 38 | sylancl | ⊢ ( ( 𝑃 pCnt 𝐵 ) ∈ ℝ → ( ( 𝑃 pCnt 𝐵 ) < +∞ ↔ ¬ +∞ ≤ ( 𝑃 pCnt 𝐵 ) ) ) |
| 40 | 35 39 | mpbid | ⊢ ( ( 𝑃 pCnt 𝐵 ) ∈ ℝ → ¬ +∞ ≤ ( 𝑃 pCnt 𝐵 ) ) |
| 41 | 34 40 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ¬ +∞ ≤ ( 𝑃 pCnt 𝐵 ) ) |
| 42 | 29 41 | eqnbrtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ¬ ( 𝑃 pCnt 0 ) ≤ ( 𝑃 pCnt 𝐵 ) ) |
| 43 | 4 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) |
| 44 | oveq2 | ⊢ ( 𝐴 = 0 → ( 𝑃 pCnt 𝐴 ) = ( 𝑃 pCnt 0 ) ) | |
| 45 | 44 | breq1d | ⊢ ( 𝐴 = 0 → ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ↔ ( 𝑃 pCnt 0 ) ≤ ( 𝑃 pCnt 𝐵 ) ) ) |
| 46 | 43 45 | syl5ibcom | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝐴 = 0 → ( 𝑃 pCnt 0 ) ≤ ( 𝑃 pCnt 𝐵 ) ) ) |
| 47 | 46 | necon3bd | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ¬ ( 𝑃 pCnt 0 ) ≤ ( 𝑃 pCnt 𝐵 ) → 𝐴 ≠ 0 ) ) |
| 48 | 42 47 | mpd | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝐴 ≠ 0 ) |
| 49 | 27 48 | eqnetrrd | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑥 / 𝑦 ) ≠ 0 ) |
| 50 | simprll | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑦 ∈ ℕ ) | |
| 51 | 50 | nncnd | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑦 ∈ ℂ ) |
| 52 | 50 | nnne0d | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑦 ≠ 0 ) |
| 53 | 51 52 | div0d | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 0 / 𝑦 ) = 0 ) |
| 54 | oveq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 / 𝑦 ) = ( 0 / 𝑦 ) ) | |
| 55 | 54 | eqeq1d | ⊢ ( 𝑥 = 0 → ( ( 𝑥 / 𝑦 ) = 0 ↔ ( 0 / 𝑦 ) = 0 ) ) |
| 56 | 53 55 | syl5ibrcom | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑥 = 0 → ( 𝑥 / 𝑦 ) = 0 ) ) |
| 57 | 56 | necon3d | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑥 / 𝑦 ) ≠ 0 → 𝑥 ≠ 0 ) ) |
| 58 | 49 57 | mpd | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑥 ≠ 0 ) |
| 59 | pczcl | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) → ( 𝑃 pCnt 𝑥 ) ∈ ℕ0 ) | |
| 60 | 23 26 58 59 | syl12anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝑥 ) ∈ ℕ0 ) |
| 61 | 25 60 | nnexpcld | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ∈ ℕ ) |
| 62 | 61 | nncnd | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ∈ ℂ ) |
| 63 | 62 51 | mulcomd | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) · 𝑦 ) = ( 𝑦 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ) ) |
| 64 | 63 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑥 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) / ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) · 𝑦 ) ) = ( ( 𝑥 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) / ( 𝑦 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ) ) ) |
| 65 | 26 | zcnd | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑥 ∈ ℂ ) |
| 66 | 23 50 | pccld | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝑦 ) ∈ ℕ0 ) |
| 67 | 25 66 | nnexpcld | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ∈ ℕ ) |
| 68 | 67 | nncnd | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ∈ ℂ ) |
| 69 | 61 | nnne0d | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ≠ 0 ) |
| 70 | 67 | nnne0d | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ≠ 0 ) |
| 71 | 65 62 51 68 69 70 52 | divdivdivd | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑥 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ) / ( 𝑦 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ) = ( ( 𝑥 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) / ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) · 𝑦 ) ) ) |
| 72 | 27 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝐴 ) = ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) ) |
| 73 | pcdiv | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ∧ 𝑦 ∈ ℕ ) → ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) = ( ( 𝑃 pCnt 𝑥 ) − ( 𝑃 pCnt 𝑦 ) ) ) | |
| 74 | 23 26 58 50 73 | syl121anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) = ( ( 𝑃 pCnt 𝑥 ) − ( 𝑃 pCnt 𝑦 ) ) ) |
| 75 | 72 74 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝐴 ) = ( ( 𝑃 pCnt 𝑥 ) − ( 𝑃 pCnt 𝑦 ) ) ) |
| 76 | 75 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) = ( 𝑃 ↑ ( ( 𝑃 pCnt 𝑥 ) − ( 𝑃 pCnt 𝑦 ) ) ) ) |
| 77 | 25 | nncnd | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑃 ∈ ℂ ) |
| 78 | 25 | nnne0d | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑃 ≠ 0 ) |
| 79 | 66 | nn0zd | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝑦 ) ∈ ℤ ) |
| 80 | 60 | nn0zd | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝑥 ) ∈ ℤ ) |
| 81 | 77 78 79 80 | expsubd | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( ( 𝑃 pCnt 𝑥 ) − ( 𝑃 pCnt 𝑦 ) ) ) = ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ) |
| 82 | 76 81 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) = ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ) |
| 83 | 82 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝐴 / ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) = ( 𝐴 / ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ) ) |
| 84 | 27 | oveq1d | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝐴 / ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ) = ( ( 𝑥 / 𝑦 ) / ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ) ) |
| 85 | 65 51 62 68 52 70 69 | divdivdivd | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑥 / 𝑦 ) / ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ) = ( ( 𝑥 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) / ( 𝑦 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ) ) ) |
| 86 | 83 84 85 | 3eqtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝐴 / ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) = ( ( 𝑥 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) / ( 𝑦 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ) ) ) |
| 87 | 64 71 86 | 3eqtr4d | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑥 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ) / ( 𝑦 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ) = ( 𝐴 / ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) |
| 88 | 87 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) · ( ( 𝑥 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ) / ( 𝑦 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ) ) = ( ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) · ( 𝐴 / ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) ) |
| 89 | 2 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝐴 ∈ ℚ ) |
| 90 | 89 14 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝐴 ∈ ℂ ) |
| 91 | pcqcl | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) → ( 𝑃 pCnt 𝐴 ) ∈ ℤ ) | |
| 92 | 23 89 48 91 | syl12anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝐴 ) ∈ ℤ ) |
| 93 | 77 78 92 | expclzd | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∈ ℂ ) |
| 94 | 77 78 92 | expne0d | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ≠ 0 ) |
| 95 | 90 93 94 | divcan2d | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) · ( 𝐴 / ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) = 𝐴 ) |
| 96 | 88 95 | eqtr2d | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝐴 = ( ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) · ( ( 𝑥 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ) / ( 𝑦 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ) ) ) |
| 97 | simplrr | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑧 ∈ ℤ ) | |
| 98 | simprrr | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝐵 = ( 𝑧 / 𝑤 ) ) | |
| 99 | 98 31 | eqnetrrd | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑧 / 𝑤 ) ≠ 0 ) |
| 100 | simprlr | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑤 ∈ ℕ ) | |
| 101 | 100 | nncnd | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑤 ∈ ℂ ) |
| 102 | 100 | nnne0d | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑤 ≠ 0 ) |
| 103 | 101 102 | div0d | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 0 / 𝑤 ) = 0 ) |
| 104 | oveq1 | ⊢ ( 𝑧 = 0 → ( 𝑧 / 𝑤 ) = ( 0 / 𝑤 ) ) | |
| 105 | 104 | eqeq1d | ⊢ ( 𝑧 = 0 → ( ( 𝑧 / 𝑤 ) = 0 ↔ ( 0 / 𝑤 ) = 0 ) ) |
| 106 | 103 105 | syl5ibrcom | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑧 = 0 → ( 𝑧 / 𝑤 ) = 0 ) ) |
| 107 | 106 | necon3d | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑧 / 𝑤 ) ≠ 0 → 𝑧 ≠ 0 ) ) |
| 108 | 99 107 | mpd | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑧 ≠ 0 ) |
| 109 | pczcl | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑧 ∈ ℤ ∧ 𝑧 ≠ 0 ) ) → ( 𝑃 pCnt 𝑧 ) ∈ ℕ0 ) | |
| 110 | 23 97 108 109 | syl12anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝑧 ) ∈ ℕ0 ) |
| 111 | 25 110 | nnexpcld | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ∈ ℕ ) |
| 112 | 111 | nncnd | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ∈ ℂ ) |
| 113 | 112 101 | mulcomd | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) · 𝑤 ) = ( 𝑤 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ) ) |
| 114 | 113 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑧 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) / ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) · 𝑤 ) ) = ( ( 𝑧 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) / ( 𝑤 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ) ) ) |
| 115 | 97 | zcnd | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑧 ∈ ℂ ) |
| 116 | 23 100 | pccld | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝑤 ) ∈ ℕ0 ) |
| 117 | 25 116 | nnexpcld | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ∈ ℕ ) |
| 118 | 117 | nncnd | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ∈ ℂ ) |
| 119 | 111 | nnne0d | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ≠ 0 ) |
| 120 | 117 | nnne0d | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ≠ 0 ) |
| 121 | 115 112 101 118 119 120 102 | divdivdivd | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑧 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ) / ( 𝑤 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ) = ( ( 𝑧 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) / ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) · 𝑤 ) ) ) |
| 122 | 98 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝐵 ) = ( 𝑃 pCnt ( 𝑧 / 𝑤 ) ) ) |
| 123 | pcdiv | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑧 ∈ ℤ ∧ 𝑧 ≠ 0 ) ∧ 𝑤 ∈ ℕ ) → ( 𝑃 pCnt ( 𝑧 / 𝑤 ) ) = ( ( 𝑃 pCnt 𝑧 ) − ( 𝑃 pCnt 𝑤 ) ) ) | |
| 124 | 23 97 108 100 123 | syl121anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt ( 𝑧 / 𝑤 ) ) = ( ( 𝑃 pCnt 𝑧 ) − ( 𝑃 pCnt 𝑤 ) ) ) |
| 125 | 122 124 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝐵 ) = ( ( 𝑃 pCnt 𝑧 ) − ( 𝑃 pCnt 𝑤 ) ) ) |
| 126 | 125 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐵 ) ) = ( 𝑃 ↑ ( ( 𝑃 pCnt 𝑧 ) − ( 𝑃 pCnt 𝑤 ) ) ) ) |
| 127 | 116 | nn0zd | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝑤 ) ∈ ℤ ) |
| 128 | 110 | nn0zd | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝑧 ) ∈ ℤ ) |
| 129 | 77 78 127 128 | expsubd | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( ( 𝑃 pCnt 𝑧 ) − ( 𝑃 pCnt 𝑤 ) ) ) = ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ) |
| 130 | 126 129 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐵 ) ) = ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ) |
| 131 | 130 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝐵 / ( 𝑃 ↑ ( 𝑃 pCnt 𝐵 ) ) ) = ( 𝐵 / ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ) ) |
| 132 | 98 | oveq1d | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝐵 / ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ) = ( ( 𝑧 / 𝑤 ) / ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ) ) |
| 133 | 115 101 112 118 102 120 119 | divdivdivd | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑧 / 𝑤 ) / ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ) = ( ( 𝑧 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) / ( 𝑤 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ) ) ) |
| 134 | 131 132 133 | 3eqtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝐵 / ( 𝑃 ↑ ( 𝑃 pCnt 𝐵 ) ) ) = ( ( 𝑧 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) / ( 𝑤 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ) ) ) |
| 135 | 114 121 134 | 3eqtr4d | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑧 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ) / ( 𝑤 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ) = ( 𝐵 / ( 𝑃 ↑ ( 𝑃 pCnt 𝐵 ) ) ) ) |
| 136 | 135 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝐵 ) ) · ( ( 𝑧 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ) / ( 𝑤 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ) ) = ( ( 𝑃 ↑ ( 𝑃 pCnt 𝐵 ) ) · ( 𝐵 / ( 𝑃 ↑ ( 𝑃 pCnt 𝐵 ) ) ) ) ) |
| 137 | qcn | ⊢ ( 𝐵 ∈ ℚ → 𝐵 ∈ ℂ ) | |
| 138 | 30 137 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝐵 ∈ ℂ ) |
| 139 | 77 78 33 | expclzd | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐵 ) ) ∈ ℂ ) |
| 140 | 77 78 33 | expne0d | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐵 ) ) ≠ 0 ) |
| 141 | 138 139 140 | divcan2d | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝐵 ) ) · ( 𝐵 / ( 𝑃 ↑ ( 𝑃 pCnt 𝐵 ) ) ) ) = 𝐵 ) |
| 142 | 136 141 | eqtr2d | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝐵 = ( ( 𝑃 ↑ ( 𝑃 pCnt 𝐵 ) ) · ( ( 𝑧 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ) / ( 𝑤 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ) ) ) |
| 143 | eluz | ⊢ ( ( ( 𝑃 pCnt 𝐴 ) ∈ ℤ ∧ ( 𝑃 pCnt 𝐵 ) ∈ ℤ ) → ( ( 𝑃 pCnt 𝐵 ) ∈ ( ℤ≥ ‘ ( 𝑃 pCnt 𝐴 ) ) ↔ ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) ) | |
| 144 | 92 33 143 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑃 pCnt 𝐵 ) ∈ ( ℤ≥ ‘ ( 𝑃 pCnt 𝐴 ) ) ↔ ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) ) |
| 145 | 43 144 | mpbird | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝐵 ) ∈ ( ℤ≥ ‘ ( 𝑃 pCnt 𝐴 ) ) ) |
| 146 | pczdvds | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ∥ 𝑥 ) | |
| 147 | 23 26 58 146 | syl12anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ∥ 𝑥 ) |
| 148 | 61 | nnzd | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ∈ ℤ ) |
| 149 | dvdsval2 | ⊢ ( ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ∈ ℤ ∧ ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ≠ 0 ∧ 𝑥 ∈ ℤ ) → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ∥ 𝑥 ↔ ( 𝑥 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ) ∈ ℤ ) ) | |
| 150 | 148 69 26 149 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ∥ 𝑥 ↔ ( 𝑥 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ) ∈ ℤ ) ) |
| 151 | 147 150 | mpbid | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑥 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ) ∈ ℤ ) |
| 152 | pczndvds2 | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) → ¬ 𝑃 ∥ ( 𝑥 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ) ) | |
| 153 | 23 26 58 152 | syl12anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ¬ 𝑃 ∥ ( 𝑥 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ) ) |
| 154 | 151 153 | jca | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑥 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ) ∈ ℤ ∧ ¬ 𝑃 ∥ ( 𝑥 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ) ) ) |
| 155 | pcdvds | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑦 ∈ ℕ ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ∥ 𝑦 ) | |
| 156 | 23 50 155 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ∥ 𝑦 ) |
| 157 | 67 | nnzd | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ∈ ℤ ) |
| 158 | 50 | nnzd | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑦 ∈ ℤ ) |
| 159 | dvdsval2 | ⊢ ( ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ∈ ℤ ∧ ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ≠ 0 ∧ 𝑦 ∈ ℤ ) → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ∥ 𝑦 ↔ ( 𝑦 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ∈ ℤ ) ) | |
| 160 | 157 70 158 159 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ∥ 𝑦 ↔ ( 𝑦 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ∈ ℤ ) ) |
| 161 | 156 160 | mpbid | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑦 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ∈ ℤ ) |
| 162 | 50 | nnred | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑦 ∈ ℝ ) |
| 163 | 67 | nnred | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ∈ ℝ ) |
| 164 | 50 | nngt0d | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 0 < 𝑦 ) |
| 165 | 67 | nngt0d | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 0 < ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) |
| 166 | 162 163 164 165 | divgt0d | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 0 < ( 𝑦 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ) |
| 167 | elnnz | ⊢ ( ( 𝑦 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ∈ ℕ ↔ ( ( 𝑦 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ∈ ℤ ∧ 0 < ( 𝑦 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ) ) | |
| 168 | 161 166 167 | sylanbrc | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑦 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ∈ ℕ ) |
| 169 | pcndvds2 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑦 ∈ ℕ ) → ¬ 𝑃 ∥ ( 𝑦 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ) | |
| 170 | 23 50 169 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ¬ 𝑃 ∥ ( 𝑦 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ) |
| 171 | 168 170 | jca | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑦 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ∈ ℕ ∧ ¬ 𝑃 ∥ ( 𝑦 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ) ) |
| 172 | pczdvds | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑧 ∈ ℤ ∧ 𝑧 ≠ 0 ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ∥ 𝑧 ) | |
| 173 | 23 97 108 172 | syl12anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ∥ 𝑧 ) |
| 174 | 111 | nnzd | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ∈ ℤ ) |
| 175 | dvdsval2 | ⊢ ( ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ∈ ℤ ∧ ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ≠ 0 ∧ 𝑧 ∈ ℤ ) → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ∥ 𝑧 ↔ ( 𝑧 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ) ∈ ℤ ) ) | |
| 176 | 174 119 97 175 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ∥ 𝑧 ↔ ( 𝑧 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ) ∈ ℤ ) ) |
| 177 | 173 176 | mpbid | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑧 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ) ∈ ℤ ) |
| 178 | pczndvds2 | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑧 ∈ ℤ ∧ 𝑧 ≠ 0 ) ) → ¬ 𝑃 ∥ ( 𝑧 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ) ) | |
| 179 | 23 97 108 178 | syl12anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ¬ 𝑃 ∥ ( 𝑧 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ) ) |
| 180 | 177 179 | jca | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑧 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ) ∈ ℤ ∧ ¬ 𝑃 ∥ ( 𝑧 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ) ) ) |
| 181 | pcdvds | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑤 ∈ ℕ ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ∥ 𝑤 ) | |
| 182 | 23 100 181 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ∥ 𝑤 ) |
| 183 | 117 | nnzd | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ∈ ℤ ) |
| 184 | 100 | nnzd | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑤 ∈ ℤ ) |
| 185 | dvdsval2 | ⊢ ( ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ∈ ℤ ∧ ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ≠ 0 ∧ 𝑤 ∈ ℤ ) → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ∥ 𝑤 ↔ ( 𝑤 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ∈ ℤ ) ) | |
| 186 | 183 120 184 185 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ∥ 𝑤 ↔ ( 𝑤 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ∈ ℤ ) ) |
| 187 | 182 186 | mpbid | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑤 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ∈ ℤ ) |
| 188 | 100 | nnred | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑤 ∈ ℝ ) |
| 189 | 117 | nnred | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ∈ ℝ ) |
| 190 | 100 | nngt0d | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 0 < 𝑤 ) |
| 191 | 117 | nngt0d | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 0 < ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) |
| 192 | 188 189 190 191 | divgt0d | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 0 < ( 𝑤 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ) |
| 193 | elnnz | ⊢ ( ( 𝑤 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ∈ ℕ ↔ ( ( 𝑤 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ∈ ℤ ∧ 0 < ( 𝑤 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ) ) | |
| 194 | 187 192 193 | sylanbrc | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑤 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ∈ ℕ ) |
| 195 | pcndvds2 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑤 ∈ ℕ ) → ¬ 𝑃 ∥ ( 𝑤 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ) | |
| 196 | 23 100 195 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ¬ 𝑃 ∥ ( 𝑤 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ) |
| 197 | 194 196 | jca | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑤 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ∈ ℕ ∧ ¬ 𝑃 ∥ ( 𝑤 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ) ) |
| 198 | 23 96 142 145 154 171 180 197 | pcaddlem | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) |
| 199 | 198 | expr | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ( ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) ) |
| 200 | 199 | rexlimdvva | ⊢ ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( ∃ 𝑦 ∈ ℕ ∃ 𝑤 ∈ ℕ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) ) |
| 201 | 22 200 | biimtrrid | ⊢ ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( ( ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ∧ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) ) |
| 202 | 201 | rexlimdvva | ⊢ ( ( 𝜑 ∧ 𝐵 ≠ 0 ) → ( ∃ 𝑥 ∈ ℤ ∃ 𝑧 ∈ ℤ ( ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ∧ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) ) |
| 203 | 21 202 | biimtrrid | ⊢ ( ( 𝜑 ∧ 𝐵 ≠ 0 ) → ( ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ∧ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) ) |
| 204 | 20 203 | pm2.61dane | ⊢ ( 𝜑 → ( ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ∧ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) ) |
| 205 | 6 8 204 | mp2and | ⊢ ( 𝜑 → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) |