This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Exponent subtraction law for integer exponentiation. (Contributed by Mario Carneiro, 28-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | expcld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| sqrecd.1 | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) | ||
| expclzd.3 | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | ||
| expsubd.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| Assertion | expsubd | ⊢ ( 𝜑 → ( 𝐴 ↑ ( 𝑀 − 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) / ( 𝐴 ↑ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | sqrecd.1 | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) | |
| 3 | expclzd.3 | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | |
| 4 | expsubd.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 5 | expsub | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝐴 ↑ ( 𝑀 − 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) / ( 𝐴 ↑ 𝑁 ) ) ) | |
| 6 | 1 2 4 3 5 | syl22anc | ⊢ ( 𝜑 → ( 𝐴 ↑ ( 𝑀 − 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) / ( 𝐴 ↑ 𝑁 ) ) ) |