This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the set of rationals. (Contributed by NM, 8-Jan-2002) (Revised by Mario Carneiro, 28-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elq | ⊢ ( 𝐴 ∈ ℚ ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-q | ⊢ ℚ = ( / “ ( ℤ × ℕ ) ) | |
| 2 | 1 | eleq2i | ⊢ ( 𝐴 ∈ ℚ ↔ 𝐴 ∈ ( / “ ( ℤ × ℕ ) ) ) |
| 3 | df-div | ⊢ / = ( 𝑥 ∈ ℂ , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( ℩ 𝑧 ∈ ℂ ( 𝑦 · 𝑧 ) = 𝑥 ) ) | |
| 4 | riotaex | ⊢ ( ℩ 𝑧 ∈ ℂ ( 𝑦 · 𝑧 ) = 𝑥 ) ∈ V | |
| 5 | 3 4 | fnmpoi | ⊢ / Fn ( ℂ × ( ℂ ∖ { 0 } ) ) |
| 6 | zsscn | ⊢ ℤ ⊆ ℂ | |
| 7 | nncn | ⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℂ ) | |
| 8 | nnne0 | ⊢ ( 𝑥 ∈ ℕ → 𝑥 ≠ 0 ) | |
| 9 | eldifsn | ⊢ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) | |
| 10 | 7 8 9 | sylanbrc | ⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ( ℂ ∖ { 0 } ) ) |
| 11 | 10 | ssriv | ⊢ ℕ ⊆ ( ℂ ∖ { 0 } ) |
| 12 | xpss12 | ⊢ ( ( ℤ ⊆ ℂ ∧ ℕ ⊆ ( ℂ ∖ { 0 } ) ) → ( ℤ × ℕ ) ⊆ ( ℂ × ( ℂ ∖ { 0 } ) ) ) | |
| 13 | 6 11 12 | mp2an | ⊢ ( ℤ × ℕ ) ⊆ ( ℂ × ( ℂ ∖ { 0 } ) ) |
| 14 | ovelimab | ⊢ ( ( / Fn ( ℂ × ( ℂ ∖ { 0 } ) ) ∧ ( ℤ × ℕ ) ⊆ ( ℂ × ( ℂ ∖ { 0 } ) ) ) → ( 𝐴 ∈ ( / “ ( ℤ × ℕ ) ) ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) ) | |
| 15 | 5 13 14 | mp2an | ⊢ ( 𝐴 ∈ ( / “ ( ℤ × ℕ ) ) ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) |
| 16 | 2 15 | bitri | ⊢ ( 𝐴 ∈ ℚ ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) |