This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the general prime count function. (Contributed by Mario Carneiro, 23-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pcqcl | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 pCnt 𝑁 ) ∈ ℤ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ) → 𝑁 ∈ ℚ ) | |
| 2 | elq | ⊢ ( 𝑁 ∈ ℚ ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝑁 = ( 𝑥 / 𝑦 ) ) | |
| 3 | 1 2 | sylib | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝑁 = ( 𝑥 / 𝑦 ) ) |
| 4 | nncn | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℂ ) | |
| 5 | nnne0 | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ≠ 0 ) | |
| 6 | 4 5 | div0d | ⊢ ( 𝑦 ∈ ℕ → ( 0 / 𝑦 ) = 0 ) |
| 7 | 6 | ad2antll | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ( 0 / 𝑦 ) = 0 ) |
| 8 | oveq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 / 𝑦 ) = ( 0 / 𝑦 ) ) | |
| 9 | 8 | eqeq1d | ⊢ ( 𝑥 = 0 → ( ( 𝑥 / 𝑦 ) = 0 ↔ ( 0 / 𝑦 ) = 0 ) ) |
| 10 | 7 9 | syl5ibrcom | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ( 𝑥 = 0 → ( 𝑥 / 𝑦 ) = 0 ) ) |
| 11 | 10 | necon3d | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ( ( 𝑥 / 𝑦 ) ≠ 0 → 𝑥 ≠ 0 ) ) |
| 12 | an32 | ⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑥 ≠ 0 ) ↔ ( ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ∧ 𝑦 ∈ ℕ ) ) | |
| 13 | pcdiv | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ∧ 𝑦 ∈ ℕ ) → ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) = ( ( 𝑃 pCnt 𝑥 ) − ( 𝑃 pCnt 𝑦 ) ) ) | |
| 14 | pczcl | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) → ( 𝑃 pCnt 𝑥 ) ∈ ℕ0 ) | |
| 15 | 14 | nn0zd | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) → ( 𝑃 pCnt 𝑥 ) ∈ ℤ ) |
| 16 | 15 | 3adant3 | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ∧ 𝑦 ∈ ℕ ) → ( 𝑃 pCnt 𝑥 ) ∈ ℤ ) |
| 17 | nnz | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℤ ) | |
| 18 | 17 5 | jca | ⊢ ( 𝑦 ∈ ℕ → ( 𝑦 ∈ ℤ ∧ 𝑦 ≠ 0 ) ) |
| 19 | pczcl | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑦 ∈ ℤ ∧ 𝑦 ≠ 0 ) ) → ( 𝑃 pCnt 𝑦 ) ∈ ℕ0 ) | |
| 20 | 19 | nn0zd | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑦 ∈ ℤ ∧ 𝑦 ≠ 0 ) ) → ( 𝑃 pCnt 𝑦 ) ∈ ℤ ) |
| 21 | 18 20 | sylan2 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑦 ∈ ℕ ) → ( 𝑃 pCnt 𝑦 ) ∈ ℤ ) |
| 22 | 21 | 3adant2 | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ∧ 𝑦 ∈ ℕ ) → ( 𝑃 pCnt 𝑦 ) ∈ ℤ ) |
| 23 | 16 22 | zsubcld | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑃 pCnt 𝑥 ) − ( 𝑃 pCnt 𝑦 ) ) ∈ ℤ ) |
| 24 | 13 23 | eqeltrd | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ∧ 𝑦 ∈ ℕ ) → ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) ∈ ℤ ) |
| 25 | 24 | 3expb | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ∧ 𝑦 ∈ ℕ ) ) → ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) ∈ ℤ ) |
| 26 | 12 25 | sylan2b | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑥 ≠ 0 ) ) → ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) ∈ ℤ ) |
| 27 | 26 | expr | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ( 𝑥 ≠ 0 → ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) ∈ ℤ ) ) |
| 28 | 11 27 | syld | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ( ( 𝑥 / 𝑦 ) ≠ 0 → ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) ∈ ℤ ) ) |
| 29 | neeq1 | ⊢ ( 𝑁 = ( 𝑥 / 𝑦 ) → ( 𝑁 ≠ 0 ↔ ( 𝑥 / 𝑦 ) ≠ 0 ) ) | |
| 30 | oveq2 | ⊢ ( 𝑁 = ( 𝑥 / 𝑦 ) → ( 𝑃 pCnt 𝑁 ) = ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) ) | |
| 31 | 30 | eleq1d | ⊢ ( 𝑁 = ( 𝑥 / 𝑦 ) → ( ( 𝑃 pCnt 𝑁 ) ∈ ℤ ↔ ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) ∈ ℤ ) ) |
| 32 | 29 31 | imbi12d | ⊢ ( 𝑁 = ( 𝑥 / 𝑦 ) → ( ( 𝑁 ≠ 0 → ( 𝑃 pCnt 𝑁 ) ∈ ℤ ) ↔ ( ( 𝑥 / 𝑦 ) ≠ 0 → ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) ∈ ℤ ) ) ) |
| 33 | 28 32 | syl5ibrcom | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ( 𝑁 = ( 𝑥 / 𝑦 ) → ( 𝑁 ≠ 0 → ( 𝑃 pCnt 𝑁 ) ∈ ℤ ) ) ) |
| 34 | 33 | com23 | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ( 𝑁 ≠ 0 → ( 𝑁 = ( 𝑥 / 𝑦 ) → ( 𝑃 pCnt 𝑁 ) ∈ ℤ ) ) ) |
| 35 | 34 | impancom | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ≠ 0 ) → ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) → ( 𝑁 = ( 𝑥 / 𝑦 ) → ( 𝑃 pCnt 𝑁 ) ∈ ℤ ) ) ) |
| 36 | 35 | adantrl | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ) → ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) → ( 𝑁 = ( 𝑥 / 𝑦 ) → ( 𝑃 pCnt 𝑁 ) ∈ ℤ ) ) ) |
| 37 | 36 | rexlimdvv | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ) → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝑁 = ( 𝑥 / 𝑦 ) → ( 𝑃 pCnt 𝑁 ) ∈ ℤ ) ) |
| 38 | 3 37 | mpd | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 pCnt 𝑁 ) ∈ ℤ ) |