This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inequality of pcadd becomes an equality when one of the factors has prime count strictly less than the other. (Contributed by Mario Carneiro, 16-Jan-2015) (Revised by Mario Carneiro, 26-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pcadd2.1 | ⊢ ( 𝜑 → 𝑃 ∈ ℙ ) | |
| pcadd2.2 | ⊢ ( 𝜑 → 𝐴 ∈ ℚ ) | ||
| pcadd2.3 | ⊢ ( 𝜑 → 𝐵 ∈ ℚ ) | ||
| pcadd2.4 | ⊢ ( 𝜑 → ( 𝑃 pCnt 𝐴 ) < ( 𝑃 pCnt 𝐵 ) ) | ||
| Assertion | pcadd2 | ⊢ ( 𝜑 → ( 𝑃 pCnt 𝐴 ) = ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pcadd2.1 | ⊢ ( 𝜑 → 𝑃 ∈ ℙ ) | |
| 2 | pcadd2.2 | ⊢ ( 𝜑 → 𝐴 ∈ ℚ ) | |
| 3 | pcadd2.3 | ⊢ ( 𝜑 → 𝐵 ∈ ℚ ) | |
| 4 | pcadd2.4 | ⊢ ( 𝜑 → ( 𝑃 pCnt 𝐴 ) < ( 𝑃 pCnt 𝐵 ) ) | |
| 5 | pcxcl | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ ) → ( 𝑃 pCnt 𝐴 ) ∈ ℝ* ) | |
| 6 | 1 2 5 | syl2anc | ⊢ ( 𝜑 → ( 𝑃 pCnt 𝐴 ) ∈ ℝ* ) |
| 7 | qaddcl | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ) → ( 𝐴 + 𝐵 ) ∈ ℚ ) | |
| 8 | 2 3 7 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) ∈ ℚ ) |
| 9 | pcxcl | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 + 𝐵 ) ∈ ℚ ) → ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ∈ ℝ* ) | |
| 10 | 1 8 9 | syl2anc | ⊢ ( 𝜑 → ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ∈ ℝ* ) |
| 11 | pcxcl | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐵 ∈ ℚ ) → ( 𝑃 pCnt 𝐵 ) ∈ ℝ* ) | |
| 12 | 1 3 11 | syl2anc | ⊢ ( 𝜑 → ( 𝑃 pCnt 𝐵 ) ∈ ℝ* ) |
| 13 | 6 12 4 | xrltled | ⊢ ( 𝜑 → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) |
| 14 | 1 2 3 13 | pcadd | ⊢ ( 𝜑 → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) |
| 15 | qnegcl | ⊢ ( 𝐵 ∈ ℚ → - 𝐵 ∈ ℚ ) | |
| 16 | 3 15 | syl | ⊢ ( 𝜑 → - 𝐵 ∈ ℚ ) |
| 17 | xrltnle | ⊢ ( ( ( 𝑃 pCnt 𝐴 ) ∈ ℝ* ∧ ( 𝑃 pCnt 𝐵 ) ∈ ℝ* ) → ( ( 𝑃 pCnt 𝐴 ) < ( 𝑃 pCnt 𝐵 ) ↔ ¬ ( 𝑃 pCnt 𝐵 ) ≤ ( 𝑃 pCnt 𝐴 ) ) ) | |
| 18 | 6 12 17 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑃 pCnt 𝐴 ) < ( 𝑃 pCnt 𝐵 ) ↔ ¬ ( 𝑃 pCnt 𝐵 ) ≤ ( 𝑃 pCnt 𝐴 ) ) ) |
| 19 | 4 18 | mpbid | ⊢ ( 𝜑 → ¬ ( 𝑃 pCnt 𝐵 ) ≤ ( 𝑃 pCnt 𝐴 ) ) |
| 20 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑃 pCnt 𝐵 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) → 𝑃 ∈ ℙ ) |
| 21 | 16 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑃 pCnt 𝐵 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) → - 𝐵 ∈ ℚ ) |
| 22 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑃 pCnt 𝐵 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) → ( 𝐴 + 𝐵 ) ∈ ℚ ) |
| 23 | pcneg | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐵 ∈ ℚ ) → ( 𝑃 pCnt - 𝐵 ) = ( 𝑃 pCnt 𝐵 ) ) | |
| 24 | 1 3 23 | syl2anc | ⊢ ( 𝜑 → ( 𝑃 pCnt - 𝐵 ) = ( 𝑃 pCnt 𝐵 ) ) |
| 25 | 24 | breq1d | ⊢ ( 𝜑 → ( ( 𝑃 pCnt - 𝐵 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ↔ ( 𝑃 pCnt 𝐵 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) ) |
| 26 | 25 | biimpar | ⊢ ( ( 𝜑 ∧ ( 𝑃 pCnt 𝐵 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) → ( 𝑃 pCnt - 𝐵 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) |
| 27 | 20 21 22 26 | pcadd | ⊢ ( ( 𝜑 ∧ ( 𝑃 pCnt 𝐵 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) → ( 𝑃 pCnt - 𝐵 ) ≤ ( 𝑃 pCnt ( - 𝐵 + ( 𝐴 + 𝐵 ) ) ) ) |
| 28 | 27 | ex | ⊢ ( 𝜑 → ( ( 𝑃 pCnt 𝐵 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) → ( 𝑃 pCnt - 𝐵 ) ≤ ( 𝑃 pCnt ( - 𝐵 + ( 𝐴 + 𝐵 ) ) ) ) ) |
| 29 | qcn | ⊢ ( 𝐵 ∈ ℚ → 𝐵 ∈ ℂ ) | |
| 30 | 3 29 | syl | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 31 | 30 | negcld | ⊢ ( 𝜑 → - 𝐵 ∈ ℂ ) |
| 32 | qcn | ⊢ ( 𝐴 ∈ ℚ → 𝐴 ∈ ℂ ) | |
| 33 | 2 32 | syl | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 34 | 31 33 30 | add12d | ⊢ ( 𝜑 → ( - 𝐵 + ( 𝐴 + 𝐵 ) ) = ( 𝐴 + ( - 𝐵 + 𝐵 ) ) ) |
| 35 | 31 30 | addcomd | ⊢ ( 𝜑 → ( - 𝐵 + 𝐵 ) = ( 𝐵 + - 𝐵 ) ) |
| 36 | 30 | negidd | ⊢ ( 𝜑 → ( 𝐵 + - 𝐵 ) = 0 ) |
| 37 | 35 36 | eqtrd | ⊢ ( 𝜑 → ( - 𝐵 + 𝐵 ) = 0 ) |
| 38 | 37 | oveq2d | ⊢ ( 𝜑 → ( 𝐴 + ( - 𝐵 + 𝐵 ) ) = ( 𝐴 + 0 ) ) |
| 39 | 33 | addridd | ⊢ ( 𝜑 → ( 𝐴 + 0 ) = 𝐴 ) |
| 40 | 34 38 39 | 3eqtrd | ⊢ ( 𝜑 → ( - 𝐵 + ( 𝐴 + 𝐵 ) ) = 𝐴 ) |
| 41 | 40 | oveq2d | ⊢ ( 𝜑 → ( 𝑃 pCnt ( - 𝐵 + ( 𝐴 + 𝐵 ) ) ) = ( 𝑃 pCnt 𝐴 ) ) |
| 42 | 24 41 | breq12d | ⊢ ( 𝜑 → ( ( 𝑃 pCnt - 𝐵 ) ≤ ( 𝑃 pCnt ( - 𝐵 + ( 𝐴 + 𝐵 ) ) ) ↔ ( 𝑃 pCnt 𝐵 ) ≤ ( 𝑃 pCnt 𝐴 ) ) ) |
| 43 | 28 42 | sylibd | ⊢ ( 𝜑 → ( ( 𝑃 pCnt 𝐵 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) → ( 𝑃 pCnt 𝐵 ) ≤ ( 𝑃 pCnt 𝐴 ) ) ) |
| 44 | 19 43 | mtod | ⊢ ( 𝜑 → ¬ ( 𝑃 pCnt 𝐵 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) |
| 45 | xrltnle | ⊢ ( ( ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ∈ ℝ* ∧ ( 𝑃 pCnt 𝐵 ) ∈ ℝ* ) → ( ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) < ( 𝑃 pCnt 𝐵 ) ↔ ¬ ( 𝑃 pCnt 𝐵 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) ) | |
| 46 | 10 12 45 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) < ( 𝑃 pCnt 𝐵 ) ↔ ¬ ( 𝑃 pCnt 𝐵 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) ) |
| 47 | 44 46 | mpbird | ⊢ ( 𝜑 → ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) < ( 𝑃 pCnt 𝐵 ) ) |
| 48 | 10 12 47 | xrltled | ⊢ ( 𝜑 → ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ≤ ( 𝑃 pCnt 𝐵 ) ) |
| 49 | 48 24 | breqtrrd | ⊢ ( 𝜑 → ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ≤ ( 𝑃 pCnt - 𝐵 ) ) |
| 50 | 1 8 16 49 | pcadd | ⊢ ( 𝜑 → ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ≤ ( 𝑃 pCnt ( ( 𝐴 + 𝐵 ) + - 𝐵 ) ) ) |
| 51 | 33 30 31 | addassd | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) + - 𝐵 ) = ( 𝐴 + ( 𝐵 + - 𝐵 ) ) ) |
| 52 | 36 | oveq2d | ⊢ ( 𝜑 → ( 𝐴 + ( 𝐵 + - 𝐵 ) ) = ( 𝐴 + 0 ) ) |
| 53 | 51 52 39 | 3eqtrd | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) + - 𝐵 ) = 𝐴 ) |
| 54 | 53 | oveq2d | ⊢ ( 𝜑 → ( 𝑃 pCnt ( ( 𝐴 + 𝐵 ) + - 𝐵 ) ) = ( 𝑃 pCnt 𝐴 ) ) |
| 55 | 50 54 | breqtrd | ⊢ ( 𝜑 → ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ≤ ( 𝑃 pCnt 𝐴 ) ) |
| 56 | 6 10 14 55 | xrletrid | ⊢ ( 𝜑 → ( 𝑃 pCnt 𝐴 ) = ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) |