This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The remainder after dividing out all factors of P is not divisible by P . (Contributed by Mario Carneiro, 9-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pczndvds2 | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ¬ 𝑃 ∥ ( 𝑁 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmuz2 | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) | |
| 2 | eqid | ⊢ { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑁 } = { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑁 } | |
| 3 | eqid | ⊢ sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑁 } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑁 } , ℝ , < ) | |
| 4 | 2 3 | pcprendvds2 | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ¬ 𝑃 ∥ ( 𝑁 / ( 𝑃 ↑ sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑁 } , ℝ , < ) ) ) ) |
| 5 | 1 4 | sylan | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ¬ 𝑃 ∥ ( 𝑁 / ( 𝑃 ↑ sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑁 } , ℝ , < ) ) ) ) |
| 6 | 3 | pczpre | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 pCnt 𝑁 ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑁 } , ℝ , < ) ) |
| 7 | 6 | oveq2d | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) = ( 𝑃 ↑ sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑁 } , ℝ , < ) ) ) |
| 8 | 7 | oveq2d | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑁 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) = ( 𝑁 / ( 𝑃 ↑ sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑁 } , ℝ , < ) ) ) ) |
| 9 | 8 | breq2d | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 ∥ ( 𝑁 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) ↔ 𝑃 ∥ ( 𝑁 / ( 𝑃 ↑ sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑁 } , ℝ , < ) ) ) ) ) |
| 10 | 5 9 | mtbird | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ¬ 𝑃 ∥ ( 𝑁 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) ) |